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Simulations of over 103 hydrodynamically coupled solid spheres are performed to investigate collective
motion of linear trains and regular square arrays of particles suspended in a fluid bounded by two parallel
walls. Our novel accelerated Stokesian-dynamics algorithm relies on simplifications associated with the
Hele-Shaw asymptotic far-field form of the flow scattered by the particles. The simulations reveal
propagation of particle-displacement waves, deformation, and rearrangements of a particle lattice,
propagation of dislocation defects in ordered arrays, and long-lasting coexistence of ordered and
disordered regions.
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Long-range hydrodynamic interactions between solid
particles suspended in a fluid result in complex collective
dynamic phenomena, such as development of ordered
arrays of magnetically driven rotors placed on a liquid
interface [1] and formation of time-dependent patterns in
a system of particles immersed in a vibrated fluid [2].
Collective behavior due to the hydrodynamic coupling
also occurs in biological systems. A striking example is
spontaneous formation of vortical arrays of self-propelled
sperm cells confined to an interface [3]. Hydrodynamic
coupling also plays an essential role in the synchronization
of cilia beating and development of collective waves in
cilia arrays in small swimming organisms [4].

In confined multiphase systems, the collective particle
behavior is strongly influenced by bounding walls affecting
the fluid motion. According to recent studies [5–7], hydro-
dynamic confinement effects are especially significant in
parallel-wall channels of width comparable to the particle
size. Lateral motion of a particle in such a channel pro-
duces fluid backflow that is involved in numerous dynami-
cal phenomena. It enhances relative particle motion in
confined quasi-2D-suspensions [5,6], considerably in-
creases transverse hydrodynamic resistance for elongated
rigid arrays of spheres moving parallel to the channel walls
[6], and governs propagation of particle-displacement
waves [7] in linear arrays of drops in a microfluidic chan-
nel. We show that the fluid backflow resulting from particle
motion is also responsible for pattern formation occurring
in 2D hydrodynamic crystals (i.e., regular particle arrays
that are hydrodynamically driven).

In this Letter we present a numerical study of the dy-
namics of 1D and 2D regular arrays of hydrodynamically
coupled spherical particles in parallel-wall channels (cf.
configurations shown in Fig. 1). We investigate propaga-
tion of displacement waves in linear arrays. In large square
2D arrays we report emergence of striking patterns, such as
rearrangements of particle lattice, dislocation defects, and
coexistence of ordered and disordered domains. We show
that these patterns occur as a result of macroscopic defor-

mation of a regular particle lattice, and we propose a
macroscopic theory describing shape evolution of the
arrays.

Our simulations are performed using a novel accelerated
Stokesian-dynamics algorithm to follow evolution of about
103 particles. Potential applications of our new algorithm
include studies of collective motion of self-propelled par-
ticles (e.g., bacterial colonies) in liquid films, modeling
suspension flows in slit pores, and investigations of dy-
namics of macromolecules (e.g., DNA or polymer chains)
in microfluidic channels. Our acceleration technique can
also be used in boundary-integral algorithms for studying
dynamics of deformable particles in confined geometry.

Our numerical technique relies on simplifications asso-
ciated with the far-field asymptotics of the flow scattered
from the particles. Far from a particle, the scattered flow in
a parallel-wall channel assumes the Hele-Shaw form; i.e.,
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FIG. 1 (color online). Particle arrays in parallel-wall channels.
(a) System definition; (b) lateral displacement wave in linear
array; (c) square array (top view).
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it tends to a 2D parabolic flow that is driven by a harmonic
pressure distribution [6]. In our new approach we expand
the flow scattered by the particles into a carefully chosen
fundamental set of Stokes flows. Close to a particle the
basis flows form a complete set of solutions of Stokes
equations in 3D space. In the far-field domain �� H
(where � is the lateral distance from the particle, and H
is the wall separation) these flows either exponentially tend
to zero or to Hele–Shaw flow driven by a 2D pressure
multipole. The expansion of the flow field into the new set
of basis fields (obtained by an orthogonal transformation
from the fields used in [6]) yields a sparse system of linear
equations, which can be efficiently solved using iterative
sparse-matrix-manipulation techniques. Moreover, since
the far-field flow is uniquely determined by the harmonic
pressure distribution, well-developed acceleration tech-
niques for Laplace equation can be applied to further
increase numerical efficiency. The simulations discussed
below show that our algorithm is efficient and highly
accurate in both the far-field and the near-field regimes.
The calculations also reveal surprisingly rich collective
particle dynamics.

Figures 2 and 3 present our results for propagation of
particle-displacement waves in an infinite train of equally
spaced particles positioned along a line in the midplane of
a channel slightly wider than the particle size. The particle
array is driven either by Poiseuille flow [cf. Figure 1(a)] or
by a constant external lateral force. We focus on the
longitudinal waves, where the particle displacements �xi
from the reference positions xi � iW (i � 0; 1; 2; . . . ) on a
regular lattice with spacing W occur along the array
[cf. Fig. 1(b)].

Figure 2 shows the dispersion relation ! � !�k� for
harmonic displacement waves �xi � � sin�kxi �!t� in
arrays with different interparticle spacing. Here k is the
wave number, ! is the wave frequency measured in the
reference frame moving with the particles, and �� 1 is
the wave amplitude. The time and frequency are normal-
ized by the time �0 in which an isolated particle in a

channel moves by the diameter d. The shape of the disper-
sion curves is reflected in the evolution of wave packets
depicted in Fig. 3. For small interparticle spacing the
maximum frequency is shifted towards smaller wave vec-
tors, because the lubrication forces hinder the relative
particle motion. Hence, there is a long-wave tail in the
wave packet shown in Fig. 3(c).

In Fig. 2 the frequency ! is plotted rescaled by a factor
�W=d�3 to emphasize the universal behavior of the system
for large values of W. In addition, the results for the force-
driven train are multiplied by a constant negative factor �.
We find that for W=d * 5 all rescaled results fall onto a
single asymptotic master curve. In the regime W=d � 2–3
the dispersion relations significantly deviate from the mas-
ter curve, but the scaled results for the flow- and force-
driven arrays are still nearly identical. Since the scale
factor � is negative, this behavior indicates that for mod-
erate and large interparticle distances the relative particle
motion in an array driven by an external flow is equivalent
to the relative motion in a force-driven array moving in the
opposite direction.

The above features of the system dynamics result from
the far-field behavior of the flow field scattered by the
particles. In the far-field regime an isolated particle subject
to Poiseuille flow or external force produces the same
Hele-Shaw flow vHS driven by the two-dimensional dipolar
pressure pHS � cos�=� (where � is the polar angle mea-
sured from the direction of the external forcing) [5,6]. For
W=d * 5 the single-scattering approximation correspond-
ing to the superposition of dipolar fields vHS [7] adequately

FIG. 3. Evolution of a wave packet in an array with particle
spacing W=d � 1:1 (a)–(c) and W=d � 3 (d)–(f). Particle dis-
placements �xi (i � 0; 1; . . . ) are normalized by the magnitude
of the initial perturbation.

FIG. 2. Rescaled dispersion relation for small-amplitude lon-
gitudinal displacement waves in linear particle arrays in a
channel of width H � 1:1d. Arrays driven by Poiseuille flow
(dashed lines) and external force (dotted lines) for W=d � 1:1,
1.5, 2, 3, 5, 10 (from above). The results for the force-driven
system are multiplied by the factor � � �0:325.
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describes the system dynamics (and thus the rescaled
results in Fig. 2 follow a single master curve). In the regime
W=d � 2–3 evaluation of a single flow reflection is insuf-
ficient; nevertheless, the results for flow- and force-driven
arrays can be rescaled onto each other. This is because the
first reflection in the multiple-scattering sequence for the
two systems is nearly identical (apart from a rescaling
factor), owing to the exponential approach of the flow field
to the asymptotic Hele-Shaw form vHS. With matching
initial reflections, the whole multiple-scattering sequences
for systems with different forcing coincide, and the relative
particle motion is thus the same. This argument is valid not
only for linear arrays but also for other horizontal particle
arrangements (such as the 2D arrays shown in Figs. 4–6).
Moreover, similar reasoning applies to different kinds of
forcing, including Marangoni and electrophoretic forces
used to control particle positions in microfluidic devices.

Rich collective phenomena revealed by our simulations
of 2D hydrodynamic crystals are illustrated in Figs. 4–6.
Figure 4 presents the evolution of a regular square array
[cf. Fig. 1(c)] of about 103 particles undergoing diagonal
motion produced by a constant force acting on all the
particles. The initial particle spacing is within the far-field
asymptotic regime, W=d � 5. Figure 5 shows correspond-
ing results for lateral motion of the array.

Our simulations demonstrate that at short times a de-
forming square array retains its initial particle ordering
[cf. Fig. 4(a)]. Subsequently, the system develops some
striking structural features. Several rows of particle pairs
separate from the main body of the array, forming a shape
similar to airplane wings. The front part of the array has an
approximately hexagonal particle ordering, and the middle
part retains the square ordering. The rear part [marked
region in Fig. 4(c)] has a square particle arrangement but
with a different orientation than the original one. The
blowup in Figs. 4(e)–4(g) shows that the particle re-
arrangement involves discontinuous particle displacements
along a ‘‘fault line’’ at the symmetry axis of the array. A
similar dislocation event (but without lattice reorientation)
is observed in an array in the lateral motion (cf. Fig. 5).
There also occur instabilities responsible for the emer-

FIG. 5. Same as Fig. 4 but for lateral motion of the array.
(a),(b) Simulation results; (c) prediction of mean-field theory for
the same stage of evolution as in (a); (d)–(f) development of a
dislocation line in the indicated region.

FIG. 4. Evolution of a force-driven square array of N � 961
particles, moving in the diagonal direction. Channel width
H=d � 1:1 and initial particle spacing W=d � 5 (particles are
shown magnified by a factor of 2). (a)–(c) Simulation results;
(d) prediction of mean-field theory for the same stage of evolu-
tion as in (a); (e)–(g) development of a fault line in the indicated
region.
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gence of disordered domains of chaotic particle motion. In
the diagonal motion [Figs. 4(b) and 4(c)] the instability
starts at the junction between the wings and the body of the
array. For the lateral motion, the order-disorder transition
occurs when the dislocation lines approach the center of
the array [Fig. 5(b)].

Figures 4 and 5 demonstrate that the ordered regions can
withstand large macroscopic deformations and random
perturbations originating from the disordered domains.
Moreover, the ordered crystalline domains can rearrange
and heal themselves along fault or dislocation lines. The
strong propensity to maintain the ordered structure results
from the dipolar hydrodynamic interactions of neighboring
particles. An array also undergoes a macroscopic deforma-
tion resulting from the combined long-range effect of the
dipolar flow fields produced by individual particles.

For low-density arrays (i.e., for W=d� 1) the macro-
scopic flow that causes the deformation can be determined
from the flow field produced by a uniform distribution of
pressure dipoles pHS induced in the array. In general, the
macroscopic deformation can be described using the ef-
fective 2D transport equations for suspension flow in a
parallel-wall channel, u � ��pr �p	 �ff, and jp �
��pr �p	�ff. Here u is the suspension velocity aver-
aged across the channel, jp is the particle flux, f denotes
the density of the lateral force acting on the particles, �p is
the macroscopic pressure, and ��,�� (� � p, f) are linear
transport coefficients. The suspension velocity and suspen-
sion flux satisfy the continuity equations r 
 u � 0 and
@ ��=@t � �r 
 jp, where �� is the suspension density.

The macroscopic deformation of an array, evaluated in
the uniform-dipolar-moment approximation, is shown in
Figs. 4(d) and 5(c). The results indicate that our macro-
scopic description reproduces the overall shape of the
arrays for moderate times (i.e., before the complex struc-
tural features develop).

We note that the macroscopic equations predict finger-
ing instabilities near the array corners. In low-density
arrays (cf. Figs. 4 and 5) such instabilities are suppressed
due to the array ‘‘stiffness’’ associated with its ordered
structure. However, for denser arrays (cf. Fig. 6) the macro-
scopic deforming forces are sufficiently strong to destabi-
lize the tips of the array wings, in agreement with our
macroscopic theory. The results in Fig. 6 indicate that the
length scale for the fingering instability in particle arrays is
determined by the particle lattice. In our effective medium
theory there is no intrinsic length scale, so the size of the
fingers in Figs. 4(d) and 5(c) is set by the initial condition
(i.e., a square with rounded corners).

The patterns we observe in 2D hydrodynamic crystals
have analogies in other athermal systems. For example,
dislocations and chaotic dynamics develop in arrays of
convective cells in a fluid undergoing Benard convection
[8] and in vibrated granular media [9]. Our system has a
number of interesting distinctive features. First, the pattern
formation occurs in the linear Stokes-flow regime, and the

nonlinearity stems entirely from the position-dependence
of the multiparticle mobility matrix. Next, the dipolar
hydrodynamic interactions that maintain particle ordering
are nonisotropic (causing, e.g., lattice reorientation).
Finally, the dipolar flow vHS not only maintains the ordered
structure on the local level but also produces the macro-
scopic deformation of the array, leading to lattice
instabilities.

Regular particle arrays can be assembled using holo-
graphic optical tweezers [10], so the collective dynamic
phenomena revealed by our study should be accessible
experimentally. The effect of hydrodynamic coupling on
the motion of regular particle arrays could also be observed
in flow-driven 2D colloidal crystals. The equivalence of the
relative particle motion in systems with different forcing
can be used to separately control the relative particle
positions and the position of the center of mass of an array.
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FIG. 6. Square arrays of (a) N � 961 and (b) N � 256 parti-
cles in diagonal motion. Channel width H=d � 1:1 and initial
particle spacing W=d � 2.
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