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Coarse graining techniques offer a promising alternative to large-scale simulations of complex
dynamical systems, as long as the coarse-grained system is truly representative of the initial one. Here,
we investigate how the dynamical properties of oscillator networks are affected when some nodes are
merged together to form a coarse-grained network. Moreover, we show that there exists a way of grouping
nodes preserving as much as possible some crucial aspects of the network dynamics. This coarse graining
approach provides a useful method to simplify complex oscillator networks, and more generally, networks
whose dynamics involves a Laplacian matrix.
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Dynamical systems of coupled oscillators have often
been used to describe several natural phenomena in various
fields of science ranging from cardiology to ecology [1]. In
particular, the emergence of synchronization has received
much attention. Historically, the first results have been
obtained considering some particular system architecture
[2,3]. More recently, synchronization has been studied for
arbitrary coupling given by the topology of complex net-
works [4–8].

Unfortunately, for large dynamical systems of interact-
ing units such as cardiac cells synchronizing in the heart or
Malaysian fireflies flashing in unison [1], considering the
full network often results in a very large number of coupled
differential equations. In such cases, the use of coarse-
grained models is key to reducing the system complexity,
and a crucial issue is to know how we should formulate the
coarse-grained model and its dynamics [9].

A common approach is to consider some units of the
system as almost indistinguishable and to merge them into
one single node, giving rise to the concept of meta-
populations [10]. Most often, prior information about the
nature of the network nodes has been used to decide which
ones should be merged. However, some attempts can be
found to define automated procedures depending only on
the information given by the network itself. In particular, it
has been shown recently that one can merge nodes so that
the properties of random walks on the network are almost
left unchanged [11–13]. Mathematically, this was ex-
pressed as the possibility of preserving some eigenvalues
of the stochastic matrix. Merging nodes is also related to
the problem of finding clusters in networks (see for in-
stance [14–16] for popular algorithms, or [8,17,18] for
methods based on network synchronization). However,
the first aim of clustering techniques is rather to classify
the nodes into communities and not to build a coarse-
grained model of a network.

In this Letter, we investigate how the dynamics of
coupled oscillator networks, and especially synchroniza-

tion patterns, is affected by merging some nodes together.
In particular, we show that the method of [13], referred to
as Spectral Coarse Graining (SCG), can be extended to
provide a natural framework for coarse graining oscillator
networks preserving some of their dynamical properties.

We consider a system of N identical oscillators with a
coupling given by the topology of an undirected network.
Most often the coupling involves the Laplacian L, which is
defined as Lij � �wji if i � j and Lii �

P
j�iLij, where

wji stands for the weight of the edge from node j to node i.
We briefly recall that all rows of L sum up to 0 (

P
jLij �

0), which implies that there is an eigenvalue �1 � 0 with a
corresponding constant eigenvector p1. Moreover, for un-
directed and connected networks, the eigenvalues of L are
all real and satisfy 0 � �1 < �2 � . . . � �N . These eigen-
values play a critical role in the dynamics of oscillator
networks, as we will see below.

Our first example of oscillator network dynamics falls in
the general framework of [3]

 

_x i � F�xi� � �
XN

j�1

LijH�xj�; (1)

with xi 2 Rd. F�x� accounts for the internal dynamics of
each node, H�x� is a coupling function, and � is the
coupling strength. In this case, the eigenvalues of L appear
naturally in the analysis of the stability of the synchronized
state (xi�t� � s�t�, 8i, 8t), as was shown in the seminal
work of Ref. [3]. There, the authors have proved that the
linear stability of this state is described by the variational
equation _�i � DF�s��i � �

PN
j�1 LijDH�s��j, which can

be diagonalized into

 

_� � � DF�s��� � ���DH�s���; � � 1; . . . ; N:

The synchronized state (� � 1) is linearly stable if all
Lyapunov exponents are negative for � � 2; . . . ; N.
Interestingly, in several cases, such as the Rössler oscilla-
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tors [19], there exists a single range of values l1 � ��� �
l2, � � 2; . . . ; N such that the synchronized state is line-
arly stable. As a consequence, the network can be synchro-
nized if and only if �N=�2 < l2=l1 � � [3,4].

Other dynamical processes have also been investigated
to study synchronization in networks, such as the
Kuramoto model [2]:

 _x i � !i � �
X

j

Aij sin�xj � xi�: (2)

Here, Aij stands for the adjacency matrix of the network.
Close to the synchronized state (xi � xj) and considering
identical oscillators (!i � !, 8i) as in [8], the linearized
dynamics is given by _x � �� �Lx, with � �
�!1; . . . ; !N�

T . In this case, the synchronized state is al-
ways stable and the eigenvalues of L describe the behavior
of the normal modes of the linearized dynamics [8].

Overall, the two dynamical systems described above
show that the eigenvalues of L play a crucial role in the
dynamics of oscillator networks. It is therefore extremely
important to know how these eigenvalues are affected
when some nodes are merged. Besides, one should try to
preserve their value as much as possible. The coarse grain-
ing strategy introduced in this Letter shows that this goal
can be reached in many cases.

To define properly a coarse graining strategy, two ques-
tions need to be answered. First, how should we merge
nodes and update the edges in oscillator networks so that
the resulting network is truly representative of the initial
one? Second, which nodes should be merged? The first
question, though less important if one is only interested in
identifying groups of nodes in a network, is crucial to build
a coarse-grained network in which each node has similar
dynamical properties as the initial nodes it is made of. For

simplicity, we first consider the example of the small net-
work of Fig. 1(a). Let us assume we have decided to merge
the two square nodes. Then, the edges in the reduced
network should be drawn as in Fig. 1(b). Indeed, since
each of both circle nodes connected to the square nodes in
1(a) receives two edges from them, an edge with weight
equal to two needs to be drawn in the reduced network. On
the other hand, we want the square node in the reduced
network of 1(b) to exhibit a behavior corresponding to the
one of the two square nodes in the initial network. Since
each of these two nodes receives only one edge from each
circle node, an edge with weight equal to one is drawn in
the network of Fig. 1(b).

More generally, the weight of the edges should first be
added for each group. Then, to preserve the structure of
Eqs. (1) and (2), the weight of incoming edges should be
divided by the size of the group they are pointing to, as in
Figs. 1(b) and 1(c). Interestingly, if the resulting network is
made up of ~N nodes corresponding to ~N groups in the
initial network, the Laplacian ~L of the reduced network can
be expressed as a matrix product

 

~L � KLR: (3)

K 2 R
~N�N and R 2 RN� ~N are two rectangular matrices

defined as follows. If nodes are labeled with i � 1; . . . ; N
and groups are labeled with C � 1; . . . ; ~N, then

 KCi � �C;Ci
1

jCj
and RiC � �C;Ci ; (4)

where jCj is the cardinality of groupC,Ci is the label of the
group of node i, and � is the usual Kronecker symbol.
Therefore, the Cth row of K (column of R) has nonzero
elements only for the entries corresponding to the nodes in
group C. Equations (3) and (4) define the central matrix
transformation for the Spectral Coarse Graining (SCG) of
L. We note that the rows of ~L sum up to zero for any kind of
grouping, which means that ~L always has the properties of
a Laplacian.

Having found how edges are to be updated when nodes
are merged, we still have to know which nodes should be
merged. This question can be answered by observing that
Eq. (3) is very similar the one used in Ref. [13] for the SCG
of stochastic matrices [20]. In particular, we have the
property that RK is block diagonal (up to an appropriate
reshuffling of the rows and columns) with each block
corresponding to a group of nodes, and that all entries
within a block are equal to the inverse of the group size.
This means that if groups are formed such that the compo-
nents of an eigenvector p� of L are equal within each
group, then RKp� � p�, which implies that the reduced
vector Kp� is an eigenvector of ~L with eigenvalue ��

( ~LKp� � KLRKp� � ��Kp�). Therefore, merging
nodes with the same components in p� preserves the
eigenvalue �� of L; i.e., �� is also an eigenvalue of ~L.
This property defines the exact SCG of L. The equality
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FIG. 1 (color online). (a) Small toy network. (b) Coarse-
grained network in which the two square nodes have been
merged. (c) Coarse-grained network in which the three diamond
nodes have further been merged. Numbers on the edges indicate
the weight of the edges that have been updated in the coarse
graining. The smallest nontrivial eigenvalue of L, �2, is dis-
played for each network.
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between eigenvector components is, for instance, encoun-
tered if some nodes have exactly the same neighbors, as the
two square nodes in Fig. 1(a) [21].

Furthermore, the perturbation approach outlined in [13]
for stochastic matrices applies as well to the SCG of L. If
two nodes i and j having almost the same eigenvector
components in p� are merged, the new Laplacian ~L has
an eigenvalue ~�~� almost equal to ��. In this case, the SCG
is said to be approximate. Mathematically, the fact nodes i
and j have almost the same eigenvector components can be
expressed, for instance, as d�i;j � jp

�
i � p

�
j j=�p

�
max �

p�min� 	 1 for a given �, where p�max (p�min) are the largest
(smallest) components of p�. In practice, the condition
d�ij 	 1 can be implemented by defining I equally distrib-
uted intervals between p�min and p�max and grouping the
nodes whose eigenvector components in p� fall in the
same interval.

In Fig. 1, we provide an example of the two kinds of
SCG considering the eigenvector p2. On the one hand, the
two square nodes in Fig. 1 have exactly the same eigen-
vector components in p2, and the eigenvalue �2 is exactly
preserved in the network of Fig. 1(b). On the other hand,
the components in p2 of the three nodes shown with
diamonds in Fig. 1(b) are very close to each other (all
d2
i;j are smaller than 0.02) and the eigenvalue �2 is almost

preserved in the network of Fig. 1(c). This shows that SCG
is indeed not restricted to the special case in which eigen-
vector components are equal, but applies also when com-
ponents are close to each other. Finally, we note that SCG
can be readily extended to preserve more than one eigen-
value by merging nodes that have almost the same compo-
nents within each corresponding eigenvector.

To illustrate the effect of SCG on the synchronization
patterns in large oscillator networks, we first consider the
dynamics of Rössler oscillators [19] with x-coupling
[F�x; y; z� � �� y� z; x� ay; b� z�x� c��, with a �
b � 0:2 and c � 7, H�x; y; z� � x]. In this case, the stabil-
ity of the synchronized state is given by the condition
�N=�2 <� 
 37:85 [3]. The behavior of �N=�2 has al-
ready been studied in several kinds of networks [4–6].
Here, instead, we investigate how �N=�2 changes when
some nodes are merged. In Figs. 2(a) and 2(b), we first
show our results for two generic networks: a Barabási-
Albert (BA) [22] and a small-world (SW) network [23].
Stars correspond to a random merging of the nodes into ~N
groups, while circles show the results of SCG performed
along both p2 and pN; i.e., groups are made up of nodes
with d2

ij 	 1 and dNij 	 1. In the latter case, the different
values of ~N correspond to different choices of the number
of intervals I defined between the smallest and the largest
component in the eigenvectors p2 and pN (the smaller I,
the smaller ~N). Both eigenvalues �2 and �N are well
preserved in the network obtained with SCG even when
the size is strongly reduced. A similar analysis was carried
out in Fig. 2(c) for a real network of N � 185 nodes

displayed in Fig. 2(d). The network was originally built
from a synonymy relationship between words and the
graph displayed in Fig. 2(d) corresponds to one of the
disconnected subcomponents [24]. This network exhibits
clearly a heterogeneous internal structure, which makes it
particularly interesting to illustrate a coarse graining
procedure.

Figure 2 clearly shows that, if nodes are merged ran-
domly, the ratio between �N and �2 changes dramatically.
On the other hand, the nature of the synchronized state is
preserved much longer if groups are formed using the SCG
along both p2 and pN .

Let us now consider the Kuramoto model of Eq. (2). We
have seen that the lowest eigenvalues of L describe the
slow modes of the system close to the synchronized state.
Thus, one should try to preserve these eigenvalues in a
coarse-grained network, especially when they are well
separated from the rest of the spectrum. In Fig. 3(a), we
have built a coarse-grained version the network of
Fig. 2(d). This coarse-grained network was obtained by
SCG considering the two lowest nonzero eigenvalues of L,
�2 � 0:0081 and �3 � 0:016. Along each of the corre-
sponding eigenvectors p2 and p3, we have defined I �
40 intervals equally distributed between the smallest and
largest eigenvector component. We have grouped nodes
that fall in the same interval for each eigenvector.

The two eigenvalues of L are well preserved in the new
Laplacian ~L: ~�2 � 0:0083 and ~�3 � 0:017. To compare
the dynamics defined by the nonlinearized Eq. (2) in the
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FIG. 2 (color online). (a)–(c) Evolution of the ratio ~� ~N=~�2 as a
function of the size of the coarse-grained network. Stars corre-
spond to a random merging of the nodes; green circles corre-
spond to the SCG using both p2 and pN . The horizontal line
shows the critical value � � 37:85. (a) SW network [23], N �
1000, p � 0:05. (b) BA network [22], N � 1005, m � 2.
(c) Network displayed in (d). (d) Subcomponent of a synonymy
network (N � 185). Colors were set only to help for comparison
with Fig. 3(a).
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two networks, we display in Fig. 3(b) the temporal evolu-
tion of the order parameter [25]: 1� hr�t�i � 1� h1N�

f�
P
i cos�xi�t���

2 � �
P
i sin�xi�t���

2g1=2i, where the average
is taken over a set of 200 randomly chosen initial condi-
tions. The synchronized state (given by 1� r�t� � 0) is
reached in a very similar way in both networks, which
allows us to conclude that the coarse-grained network is
representative of the initial one from the point of view of
the synchronization. We also observe that in this case, the
coarse-grained network of Fig. 3(a) can be interpreted as a
backbone structure of the initial network.

Summarizing, we have investigated how synchroniza-
tion in oscillator networks behaves when some nodes are
merged together. For this purpose, we have introduced a
Spectral Coarse Graining technique for the Laplacian ma-
trix, which allowed us to know both how nodes should be
merged, and which nodes should be merged in oscillator
networks. This technique requires only the computation of
a few selected eigenvalues and eigenvectors, and was
shown to preserve some crucial aspects of the network
dynamics. For instance in the case of Rössler oscillators,
the key parameter is the ratio �N=�2, and our results show
that SCG allows us to reduce significantly the network size
while keeping �N=�2 close to its initial value, whereas
random merging of the nodes had dramatics effects on
�N=�2. Considering the dynamics of the Kuramoto model,
we have shown that the behavior of the system close to the
synchronized state can be preserved by preserving the first
eigenvalues of L. More generally, we believe that SCG
provides an appropriate mathematical framework to sim-
plify a variety of dynamical systems whose dynamics
involves a coupling given by the Laplacian of a network.

Finally, with a view to enhancing synchronizability [4–
6] instead of preserving the dynamics, SCG may be useful

to decide which nodes should be merged to reduce as much
as possible the ratio ~� ~N=~�2.
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[19] O. E. Rössler, Phys. Lett. 57, 397 (1976).
[20] Actually, they become equivalent if one takes the trans-

pose of (4), which has no effect on the eigenvalues.
[21] In this case, all eigenvalues are preserved in the network of

Fig. 1(b) except �� � L11 � L12, for which one can show
that p�1 � p

�
2 � 0 and p�i � 0, 8i > 2.

[22] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[23] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440

(1998).
[24] D. Gfeller, J.-C. Chappelier, and P. De Los Rios, Phys.

Rev. E 72, 056135 (2005).
[25] Y. Kuramoto, Chemical Oscillations, Waves and

Turbulence (Springer, New York, 1984).

(b)(a)

0 100 200 300 400
t

10
-4

10
-2

10
0

1-
<

r(
t)

>

initial network
coarse-grained network

FIG. 3 (color online). (a) Coarse-grained version ( ~N � 27) of
the network in Fig. 2(d). The node size is proportional to the size
of the corresponding groups. The node color in the coarse-
grained network corresponds to the color of the nodes in the
initial network [in Fig. 2(d), colors were chosen such that each
group is made up of nodes of only one color]. (b) Temporal
evolution of 1� hr�t�i according to Eq. (2) in the initial network
of Fig. 2 (continuous line) and in the coarse-grained network
displayed in (a) (circles). � � 1.
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