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We explore a three-level � scheme to demonstrate that the phenomenon of lasing without inversion
(LWI) can be observed in the transient regime. We demonstrate that the pure LWI contribution to the gain
of a probe field is distinct from both the resonant absorption (or gain) and the coherent Raman gain (or
absorption) by choosing specific initial populations in the dressed-state basis. The suppression of the non-
LWI (resonant and Raman) processes is followed by the ‘‘rich get richer’’ (capitalistic) effect for the
ground-state population dynamics: Initially, the more populated ground state becomes even more
populated. The conditions for the observation of the effect are specified.
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The fundamental concepts of quantum coherence and
interference have tremendous practical importance. One of
their primary applications is the generation of coherent
radiation. Ever since Einstein’s consideration of the ele-
mentary processes of spontaneous and induced emission
[1], tremendous progress has been made in the direction of
creation and utilization of different sources of coherent
light. The majority of the sources of coherent light, i.e.,
lasers, are based on the idea of light amplification in a
media where the upper level of the radiative transition is
more populated compared to the ground level [2], a con-
dition termed as population inversion. Some time ago, it
was realized that population inversion is not a necessary
condition for lasing [3]. The quantum interference between
two different transitions, simultaneously excited via coher-
ent radiation, makes possible principally new kinds of
coherent radiation sources—lasers without inversion
(LWI). The coherent contributions from the two transitions
can interfere to give related coherence effects—LWI [4],
coherent population trapping [5], and electromagnetically
induced transparency [6]. Several methods have been in-
troduced in the literature to explain LWI: the method of
quantum trajectories [7] and methods using combinations
of phenomenological approaches and earlier quantum con-
cepts [8], to name a few. The relation between the steady
state and the transient regime of LWI has been studied by
Harris and Macklin in a V-type three-level atom [9]. In this
Letter, we present a simple model to understand this effect
through the dressed-state analysis and a special preparation
of the atomic initial state.

We consider a three-level �-type atomic system with
two optically allowed transitions ab and ac (Fig. 1), ex-
cited by two resonant fields Eb�t� � Eb exp��i!bt� and
Ec�t� � Ec exp��i!ct�, respectively. We intend to con-
sider the absorption at the frequency of field Eb. To avoid
possible direct interference influence of field Ec on the
studied absorption, the resonant frequencies !b and!c are

taken to differ significantly. In this case, the absorption of
the !b field is proportional to the imaginary part of the
transient dipole moment corresponding to the transition
ab, i.e., to Im��ab�t�� [10], where �ab�t� is the off-diagonal
element of the atomic density matrix. The master equation
governing the time evolution is given by:

 

_� � �i�H0; ��=@� f�c�nth�Lc �
�Lc� �Lc� � �bLbg�;

(1)

where H0 � �@��c�cx ��b�bx� is the atom-field inter-
action Hamiltonian with the interaction Rabi frequencies
�i � }aiEi=@ (i � c; b). The atomic transitions are de-

FIG. 1 (color online). Evolution of the population of the states
a, b, and c represented as a trajectory on the sphere �
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�2 � 1 for the initial bare-state mixture with
�aa�0� � 0, �bb�0� � 0:45, and �cc�0� � 0:55 (Raman inver-
sion). Point In denotes the initial state. The shaded area repre-
sents atomic states satisfying the Raman inversion condition.
Dotted-dashed lines mark equally populated states involved in
either one of the transitions, while the population of the third
level varies between 0 and 1. Points I and 0 represent popula-
tions of states jIi and j0i. The dashed line (in red) joining point I
and 0 corresponds to Eq. (11). Left inset: Integrated probe
absorption Gab�t� �

R
t
0 d�Im�ab���. Here we use �c � 1,

�b � 0:2, �c � 0:2, �b � 0:05, and nth � 0.
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scribed through the ladder operators �ix � �i � �
y
i �

jaihij � jiihaj. Li and �Li are the superoperators acting
on the density matrix such that 2Li� � ��i; ��

y
i � �

��i�;�
y
i � and 2 �Li� � ��

y
i ; ��i� � ��

y
i �; �i�. The relaxa-

tion terms in Eq. (1) describe decay in channels ac (rate
�c) and ab (rate �b). Also, nth is the number of thermal
photons acting on the ac transition. Inclusion of the ther-
mal photons facilitates the study of the effect of thermal
decoherence. Instead of the steady-state excitation, we
consider the transient excitation by supposing that atoms
come into the interaction region in some prechosen initial
state. As we will show, depending on the initial state, a
variety of interaction regimes can be realized: absorption
of the probe field, Raman-type lasing, and amplification
without inversion leading to LWI.

Now we note some general conclusions that can be
drawn from the density matrix equations. We consider
the steady-state solution of the equation for _�ab�t� from
the set of Eqs. (1) for nth � 0:

 Im ��ab � ��b� ��bb � ��aa� ��cRe ��cb�=�ab; (2)

where ��ij are the steady-state values of the density matrix
elements �ij and 2�ab � �b � �c. From Eq. (2), it follows
that, for a two-level system (�c � 0), amplification
(Im ��ab < 0) requires population inversion ��aa > ��bb.
Nevertheless, for a three-level system (�c � 0), with suf-
ficiently negative Re ��cb, amplification could be obtained
without population inversion on the lasing ab transition.
However, to throw light on the appropriate conditions for
LWI, we look at the equation for _�bb�t�, from the set (1),
which leads to [11]

 2Im�ab � ��b�aa � _�bb�=�b: (3)

Therefore, the condition for the amplification of the probe
field (Im�ab < 0) can also be written as:

 _� bb > �b�aa: (4)

It should be stressed that the gain condition (4) applies to
populations only, whereas Eq. (2), while usually used for
the same purpose, deals with a combination of populations
�aa and �bb and polarization �bc. In the steady state, the
gain condition becomes dbb�bb > �b�aa, in contrast with
Eq. (4), where dbb is the incoherent depopulation rate of
the state b necessary to achieve steady-state amplification
[11]. On the contrary, in the transient regime, without any
incoherent ground-state depopulation, the probe-field gain
can be observed when the overall transient growth of the
ground-state population ( _�bb) exceeds the number of
atoms entering the state per unit time due to the incoherent
decay to this state (�b�aa).

We introduce a quantity Gab�t� �
R
t
0 d�Im�ab��� to

study the transient amplification conditions. By using
Eqs. (3) and (4), it can be seen that the net amplification
[Gab�t�< 0] results during the interaction time t iff

 �bb�t� � �bb�0�> �b
Z t

0
d��aa���: (5)

Thus, if an initially noninverted system shows amplifica-
tion, then Eq. (5) requires that the capitalistic (the rich get
richer) population dynamics has to be observed simulta-
neously; i.e., a more populated ground state should become
even more populated under the action of the coherent fields
than it would be due to the incoherent decay from the upper
state. As we will show later, this explains the LWI phe-
nomenon, while competing coherent Raman and direct
amplification processes are suppressed by a special
initial-state preparation.

We treat the problem in the case of so-called well-
separated components, by assuming that the effective
Rabi frequency � � ��2

a ��2
c�

1=2 is much larger than
all of the relaxation rates. Thus, averaging the density
matrix equation written in a rotated frame � �
exp��iH0t=@�~� exp�iH0t=@� over the fast oscillating terms
gives averaged master equations for an effective two-level
system consisting of states j0i and jIi:

 _� I � d0I�0 � dI0�I; �0 � �I � 1: (6)

Equation (6) describes the relaxation of the population �0

of a dark state j0i � �cjbi � �bjci and of the sum of
populations �I � h�j�j�i � h�j�j�i of the states j�i �
��jai � �bjbi � �cjci�=

���
2
p

. Here j0;�i are the eigen-
states of the Hamiltonian H0 with the eigenvalues 0 and
�@� (where �b � �b=� and �c � �c=�), respectively.
The population and depopulation rates introduced in
Eq. (6) can be shown to be d0I � �2

bnth�c and dI0 �
��2

b�nth � 1��c � �
2
c�b�=2. The off-diagonal density ma-

trix elements in the dressed-state basis, which are better
expressed through Re~��� � �h�j~�j�i � h�j~�j�i�=2
and Re~�B0 � �hBj~�j0i � h0j~�jBi�=2, where jBi is
the bright state given by jBi � �j�i � j�i�=

���
2
p
�

�bjbi � �cjci, decay exponentially with the rates 4��� �
nth�c�4�2

c � 2� � �c��2
c � 2� � �b��2

b � 2� and 4�B0 �
nth�c�1� 2�2

b � �
2
c� � �c � �b, respectively.

The dynamical equations for the dressed-state quantities
could be solved in a straightforward manner. However,
further analysis requires transformation of the results
back to the bare-state basis; the populations are

 �aa � ��I � 2Re~����0� cos�2�t�e����t�=2; (7)

 �bb � �2
b�B � �

2
c�0 � 2�b�cRe~�B0�0� cos��t�e��B0t:

(8)

Here, by solving Eq. (6), the population �I�t� is given by

 �I � d0I=d� ��I�0� � d0I=d�e
�dt; (9)

with d � d0I � dI0. Further, the dark and bright state
populations are �0 � 1� �I and �B � �I � �aa, respec-
tively. Now the probe-field absorption can be determined
by using Eq. (3), with �aa defined by Eq. (7), and _�bb,
which can be obtained by evaluating the time derivatives of
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Eqs. (7) and (8), is given by
 

_�bb � ��
2
b=2� �2

c� _�I � 2�2
b���Re~����0�

	 sin�2�t� ����e����t � 2�b�c�B0Re~�B0�0�

	 sin��t� �B0�e
��B0t; (10)

where 4�2
�� � 4�2 � �2

��, tan����� � ���=2�,
�2
B0 � �2 � �2

B0, and tan��B0� � �B0=�.
The temporal evolution of the bare-state populations and

the probe-field absorption governed by the term Im�ab�t�
experience the decaying oscillations (see Figs. 1 and 2).
There are three characteristic times for the decay (1=d >
1=�0B > 1=���) and two periods of oscillations (2�=�
and �=�). At t 
 1=d, the system approaches the steady
state with 2Im ��ab � �b ��aa=�b. Thus, there is no gain in
the steady state for our scheme, as Im ��ab is always posi-
tive. However, while approaching the steady state, the
probe-field gain and absorption are realized alternatively
(see left inset in Fig. 1). The natural question to ask is:
What net effect [Gab�t� �

R
t
0 d�Im�ab���] will be ob-

served when applying the rectangular pulses Ec and Eb
of duration t, gain or absorption? The answer strongly
depends on both the pulse duration and the initial state of
the atoms. We consider two types of initial states.

(i) Bare-state mixture: ��0� �
P
�ii�0�jiihij, where

i � a; b; c.—For atoms entering the interaction region in
a bare-state mixture, under the noninverted condition
�aa�0�< �bb�0�, the initial dynamics of the probe-field
absorption is mainly governed by the third term in
Eq. (10) that oscillates with the frequency �. Its amplitude
�2�b�c�B0Re~�B0�0� � �2�2

b�
2
c�B0��bb�0� � �cc�0��

depends on the initial population difference between states
b and c. The second term in Eq. (10), oscillating with the
frequency 2�, has a smaller contribution to the probe-field
absorption because its amplitude �2�2

b���Re~����0� �
�2
b�����aa�0� � �

2
b�bb�0� � �

2
c�cc�0�� is approximately

twice smaller and also because it becomes zero at instances
given by tn � ��2n� 1�=2�, when the third term has the
maximum contribution. The first term has a smaller value
because of the adopted approximation (�c=�� 1). As a
result, for the time in the range t � �0; �=��, the probe-
field gain could be realized only for an initially inverted
population in the channel cb: �bb�0�<�cc�0� (compare

insets in Figs. 1 and 2). This type of amplification is known
as the coherent Raman gain (CRG). In spite of the initial
CRG, during the next period (t � ��=�; 2�=��), absorp-
tion—the coherent Raman absorption (CRA)—takes
place, its value is smaller compared to the initial CRG
because of the relaxation. Thus, a net gain could be
achieved even when there is no Raman inversion, i.e.,
�bb�0�> �cc�0�, for the first period of oscillations (com-
pare left insets in Figs. 1 and 2). Besides, there is an
indication that when the oscillating terms have decayed,
i.e., when off-diagonal elements of the density matrix in a
dressed-state representation have vanished, the gain could
be restored (left inset in Fig. 2). To investigate this stage of
evolution separately, we consider below an initial state of
an atom as a dressed-state mixture.

(ii) Dressed-state mixture: ��0���I�0��j�ih�j�j�i	
h�j�=2��1��I�0��j0ih0j.—This mixture has equally
populated bright states j�i and the remaining population
in the dark state, giving an initially diagonal density matrix
in the dressed-state representation much as in case (i) after
the oscillating terms have decayed. This suggests an ex-
perimental method to prepare the aforementioned dressed-
state mixture. The populations in the bare-state represen-
tation are �aa�0���I�0�=2, �bb�0���

2
c��2�

2
c�

�2
b��aa�0�, and �cc�0� � �2

b � ��
2
c � 2�2

b��aa�0�. More-
over, the off-diagonal coherence terms also exist for this
initial state as �bc�0� � �b�c��cc�0� � �bb�0��=��

2
c �

�2
b�. Furthermore, the oscillating terms in the temporal

dependence of the density matrix elements [see Eqs. (7)
and (8)] are absent, because for these states Re~�B0�0� �
Re~����0� � 0. As a result, both CRG (CRA) and the usual
resonant absorption (gain) observable only at Re~�B0�0� �

0 and Re~����0� � 0 do not contribute to the probe field.
However, there is still a mechanism ensuring the net gain
for the probe field: a specific, relaxation-induced popula-
tion dynamics demonstrating the effect that initially less
populated excited states jai and jci become less populated
and initially more populated ground state jbi gets even
more populated during the interaction as depicted in Fig. 3.

This mechanism cannot be observed for a two-level
atom, for which the only state—the equally populated
mixture of the two dressed states—represents an absence
of coherent oscillations in the case of well-separated com-
ponents. On the contrary, for a three-level atom a set of
mixed states, characterized by a single parameter [for
example, by the initial population of bright states �I�0�],
can evolve in a nonoscillatory manner. This set can be
represented by the following equation:

 ��2�2
c � �2

b��cc � ��
2
c � 2�2

b��bb�=��
2
c � �2

b� � 1 (11)

[see thick-dashed (red) curve joining points I and 0 in the
figures]. Note that the set is limited by two boundary states:
the dark state j0ih0j (point 0 on the sphere) and the bright
one j�ih�j � j�ih�j (point I on the sphere). The exis-
tence of the set opens up a degree of freedom for
relaxation-induced evolution of an atom initially prepared

FIG. 2 (color online). The same as Fig. 1, but no initial Raman
inversion: �aa�0� � 0, �bb�0� � 0:55, and �cc�0� � 0:45.
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in the special dressed-state mixture. Moreover, the state
structure is conserved during the evolution, i.e., ��t� �
�I�t��j�ih�j � j�ih�j� � �1� �I�t��j0ih0j. Because of
this conservation, the population evolution can be repre-
sented graphically as a movement along the trajectory (11)
down to the dark state (see Fig. 3). This evolution has a
specific feature for the dynamics of the bare-state popula-
tions where the initially more populated ground state gets
more populated with time; this is connected directly to the
phenomenon of LWI. A possible value of the probe-field
gain depends according to Eq. (3) on the rate of increase of
the ground-state, jbi, population. If this rate [12] is big
enough, a net gain for the probe field can be observed. As
follows from Eqs. (7)–(9), the condition (5) for the net
amplification can be written, for the considered initial
dressed-state mixture, in the form: K � ��2�2

c �
�2
b�d=�b � 1���aa�0�= ��aa � 1� 
 �1� e�dt�=dt.
Depending on the presence or absence of the thermal

noise in the ac channel, this condition take two forms.
With the thermal noise absent (nth � 0), ��aa � 0, and the
net gain condition becomes [13]

 �c > �b � �b�1� 1=��2
c � 1=3��; (12)

which means that the decay rate at the ac transition should
be larger than that at the ab transition (the inequality �2

c >
1=3 holds due to the assumption that �c >�b). Therefore,
for �bb�0�> 1=2 (see line labeled LINV in Fig. 3), a net
gain without inversion is obtained when inequality (12) is
held. Our study including the thermal noise shows that,
below a certain upper limit of the thermal decoherence, we
observe gain in the transient regime. The observation of the
discussed transient LWI together with the population capi-
talistic effect can be realized, for example, with a nitrogen

vacancy center in strained diamond demonstrating [14] the
� system with the ms � �1 and ms � 0 ground states. By
applying the external electric field [15], it is possible to
vary the relaxation rates of the lasing and driving transi-
tions to achieve the net gain condition (12).

In conclusion, we have shown that the transient gain
without inversion is possible when the coherent Raman
amplification and absorption are canceled by a special
initial-state preparation of the three-level atoms. The
transient-LWI phenomenon is characterized by a popula-
tion capitalistic effect: The initially more populated ground
state becomes even more populated. The effect is necessary
for the net gain, because the transient LWI is generally
observable when the overall transient growth of the
ground-state population exceeds the number of atoms en-
tering the state per unit time due to the incoherent decay.
The net gain inequalities restricting the values for the
initial atomic populations and decay rates are formulated.
The population capitalistic effect can be used as an effec-
tive means for purification of quantum states, which is
important for quantum information paradigms.
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FIG. 3 (color online). Evolution of the population of states a,
b, and c for the initial dressed-state mixture (15) with �aa�0� �
0:22, �bb�0� � 0:5469, �cc�0� � 0:2331, and 2Re�bc�0� �
�0:1207. Other atom-field parameters are the same as in
Fig. 1. A net gain will be observed for the initial states that
belong to the segment of the red I0 line marked by two nearby
green dashed lines. The thin-dashed (blue) line labeled LINV

separates fully inverted states (�bb < 1=2) to its left from non-
inverted ones (�bb > 1=2) to its right. Open circles on states b
and c signify the initial coherence �bc�0�.
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