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Describing harmonic generation (HG) in terms of a system’s complex quasienergy, the harmonic power
P�E��� (over a fixed interval, �E, of harmonic energies) is shown to reproduce the wavelength scaling
predicted recently by two groups of authors based on solutions of the time-dependent Schrödinger
equation: P�E��� � ��x, where x � 5–6. Oscillations of P�E��� on a fine � scale are then shown to have
a quantum origin, involving threshold phenomena within a system of interacting ionization and HG
channels, and to be sensitive to the bound state wave function’s symmetry.
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Owing to its important applications, high-harmonic gen-
eration (HHG) is a main focus of intense laser-atom phys-
ics. The existence of a plateau in the spectrum of harmonic
rates allows the generation of intense coherent radiation in
the extreme vacuum ultraviolet (vuv) and soft x-ray region,
thus opening the possibility of exploring nonlinear optical
processes in this region [1]. The HHG process is also a
fundamental component of attosecond science [2], allow-
ing the generation of attosecond pulses. The well-known
jE0j � 3:17up law for the energy position of the HHG
plateau cutoff (where jE0j is the atomic binding energy,
up � e2F2=�4m!2� is the ponderomotive energy, and F
and ! are the laser field amplitude and frequency) shows
that use of midinfrared lasers (e.g., of wavelength �2 �m
[3]) allows the generation of higher harmonics. The key
issue is the harmonic yield for such wavelengths as com-
pared to that for the commonly-used Ti:sapphire laser, with
� � 0:8 �m, i.e., the wavelength scaling law for the HHG
efficiency. According to the semiclassical strong-field ap-
proximation (SFA) [4], this scaling law should be ���3,
for which there is partial experimental support [5].
However, a much faster decrease of the HHG efficiency
between 0.8 and 2:0 �m (� ��x, where x � 5–6) has
been predicted recently by two groups of authors [3,6]
based on numerical solutions of the time-dependent
Schrödinger equation (TDSE). Moreover, Ref. [6] predicts
that the wavelength dependence is not smooth on a fine �
scale, but exhibits rapid oscillations, which are interpreted
in terms of interference of up to five returning electron
trajectories. References [3,6] both note that the usual semi-
classical SFA treatment of HHG in terms of two classical
trajectories (‘‘short’’ and ‘‘long’’) fails to explain these
phenomena: Ref. [3] notes the ‘‘unexpectedly important
role’’ of higher order classical trajectories; Ref. [6] re-
marks that ‘‘the frequently discussed short and long tra-
jectories...are insufficient to account for the interference
oscillations.’’

In this Letter we examine the issue of �-scaling of the
HHG yield for a short-range potential model system that

has the virtues that (i) completely quantum predictions for
the HHG yield can be obtained essentially exactly and
(ii) results can be obtained relatively easily over a wide
range of the system parameters, since much of the theory is
analytical. The results of analysis of the �-scaling of the
HHG yield for our model system agree both qualitatively
and, where possible, quantitatively, with the TDSE results
in Refs. [3,6], thereby providing evidence of the generality
of these strong-field phenomena. Moreover, our approach
provides a fundamental quantum explanation for the rapid
oscillations found numerically (and interpreted semiclas-
sically) in Ref. [6]. In our approach, these oscillations are
due to effects of threshold phenomena (TP) [7,8] within a
system of interacting multiphoton ionization and harmonic
generation channels. In view of this explanation, the ne-
cessity for including many interfering classical trajectories
to reproduce the TDSE results [6] is not surprising, since
the standard semiclassical approach cannot describe purely
quantum effects, such as, in particular, those related to TP.

We employ our recently developed ab initio quantum
formulation for the HHG amplitude in terms of the com-
plex quasienergy of a bound electron in a monochromatic
field [9]; i.e., it does not require computation of the sys-
tem’s wave function. Combined with the time-dependent
effective range (TDER) theory [10], this formulation al-
lows one to obtain exact results for HHG rates for an
electron bound by short-range forces. Moreover, our re-
sults for this model system may be scaled to describe the
HHG yield for neutral atoms, in particular, for Ar and H, in
order to compare our results directly with those obtained in
Refs. [3,6] at fixed intensity, 1:6� 1014 W=cm2.

Let �jmj�F;!� be the complex quasienergy of a ground
state atom with energy E0, angular momentum l, and
projection m, in a linearly polarized electric field F�t� �
ẑF cos!t. As shown in Ref. [9], the amplitude (��jmj�n ) and
rate (Rn) for generating the nth harmonic are

 ��jmj�n �F;!� � �2
@��jmj
@Fh

��������Fh�0
; (1)
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j��jmj�n �F;!�j2; (2)

where ��jmj is the lowest-order (linear in Fh) correction to
�jmj�F;!� in a weak (probe) field, Fh�t� � ẑFh cos�t,
having the harmonic frequency, � � n!. The results in
Eqs. (1) and (2), are general, ab initio quantum definitions
of the single-atom HHG amplitude and rate [9]; however,
numerical calculations of ��jmj for real atoms are difficult.
Within the single active electron approximation, we em-
ploy here the TDER theory [10] for HHG calculations
employing Eqs. (1) and (2), as described in Ref. [11].

As in Refs. [3,6], we present �-scaling results for the
wavelength interval 0:8–2:0 �m. As shown in Ref. [11],
for this wavelength range the exact TDER results for
��jmj�n �F;!� are in perfect agreement with those in the
‘‘Keldysh approximation (KA)’’ for HHG. This approxi-
mation is very similar to the KA (or SFA) result for
ionization (see Refs. [11,12] for details) and depends on
only two atomic parameters, the binding energy jE0j and
the angular momentum l of the initially bound electron. We
apply the TDER theory to model HHG rates for H and He
(with active electrons in s-states) and Ar (with the active
electron in a p-state). Concerning the parameter jE0j, we
note that the excited states of a bound electron are ne-
glected in the TDER model, while the high-lying atomic
states are strongly distorted by an intense low-frequency
field and form a quasicontinuum of broadened Floquet
states, effectively lowering the ionization potential, Ia:
~Ia � Ia � �a. For I � 1:6� 1014 W=cm2, our estimates
of tunneling ionization rates for hydrogen show that begin-
ning from levels with n � 3 the ionization width exceeds
the distance between neighboring levels. Thus in our cal-
culations we choose the effective ionization potential ~IH �
10:5 eV for hydrogen [cf. the discussion of Eq. (8) below].
For consistency, we use approximately the same percent-
age reductions of Ia for He and Ar: ~IHe � 19:0 eV and
~IAr � 13:0 eV.

We define the integrated HHG efficiency as the har-
monic power radiated in a fixed energy interval of the
HHG spectrum, �E � �nf � ni�@!,

 P�E��� � @!
Xnf

ni

nRn; (3)

for which the TDSE studies in the interval �E �
20–50 eV yield the following wavelength scaling law
[3,6],

 P�E��� � �
�x; x � 5–6: (4)

Our results for x are given in Table I for three intensities (in
units of 1014 W=cm2), I � 1:6, 3.2, and 4.45, and several
values of �E. The results for x are similar for different �E
and decrease slowly when I increases. For I � 1:6, our
result for Ar coincides with that of Ref. [3], while the
results of [6] for H and Ar are about 10% less than ours.

The �-dependence of P�E for H and Ar in Fig. 1(a) calcu-
lated with a �-spacing of 50 nm is similar to that in
Ref. [6]. The generality of Eq. (4) is supported by the
fact, that our values of x in Table I are insensitive to the
choice of ~Ia and remain the same using unshifted ioniza-
tion potentials Ia for H, He, and Ar [in contrast to the
behavior of P�E��� on a fine � scale; see below]. Also, the
agreement between TDER and TDSE results indicates that
the excited atomic states (omitted in the TDER theory) do
not affect the scaling law (4).

Our analysis provides an explanation for the much faster
(than ���3) decrease of P�E��� with increasing �.
According to saddle-point estimates of our analytical result
for the HHG amplitude for an s-state (in terms of integrals
of Bessel functions [11]), the ��3 law originates from the
contribution of the least-spreading, shortest classical tra-
jectory and is applicable only for harmonics near the
plateau cutoff (see also Refs. [13,14]). However, the energy
interval �E considered in Ref. [3] (as well as in Table I)
lies below the cutoff region. Since the standard (two-term)
SFA fails to describe the onset and middle parts of the
HHG plateau, the faster than ��3 decrease of P�E��� found
in Ref. [3] is not surprising. Indeed, in terms of classical
trajectories, those with longer return times (and larger
spreadings) contribute below the cutoff region, thus lead-
ing to a value of x larger than 3. In fact, our representative
TDER calculations of the HHG yields for fixed numbers of

TABLE I. Values of x [cf. Eq. (4)] vs laser intensity (in units of
1014 W=cm2) and energy interval �E.

I �E (eV) Ref. H He Ar

1.6 20–50 Present 5.3 5.5 6.0
20–50 [3] 	 	 	 	 	 	 6.0
20–50 [6] 4.8 	 	 	 5.5

3.2 20–50 Present 5.0 5.2 5.4
20–70 Present 5.0 5.3 5.3
20–90 Present 4.9 5.4 5.2

4.45 40–80 Present 4.7 5.0 5.0
40–80 [3] 	 	 	 5.0 	 	 	
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FIG. 1 (color online). Wavelength dependence of P�E��� for H
(circles), He (squares), and Ar (triangles) for �E � 20–50 eV
and I � (a) 1:6� 1014 W=cm2 or (b) 3:2� 1014 W=cm2. Lines
are fits of the scaling law (4) to the data, with x given in Table I.
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harmonics within an interval �E have a scaling ����6�9�.
Nevertheless, the results (cf. Table I) for the efficiency
integrated over a fixed energy interval confirm the scaling
law (4), which itself is only an approximate (large � scale)
version of the more intriguing behavior of P�E��� on a fine
� scale.

The results for P�E��� for H and Ar on a mesh with
�� � 1 nm are given in Figs. 2 and 3. They exhibit
oscillations similar to those revealed in Ref. [6]. Our
analysis shows that the maxima of these oscillations cor-
respond to thresholds of the lowest open (n0-photon) ion-
ization channels, which are defined by the condition

 Re �� up � n0@! � 0; (5)

where n0 is a positive integer and Re� � E0. According to
the general theory of TP [7,8] (see also Refs. [15,16]), TP
in HHG consist in modifications of the wavelength depen-
dences of the HHG rates, Rn, at the closing or opening of
an ATI channel (n0). These modifications result from non-
analyticities of the HHG amplitudes ��jmj�n �F;!� at the
corresponding threshold wavelength, � � �n0

�I�.
As shown in Refs. [15,16], the TP in the rates Rn for

different n at a fixed wavelength �n0
�I� are most pro-

nounced at even (odd) n0 for the case of an s (p) initial
bound state of the active electron (since the amplitudes
��jmj�n �F;!� in this case have square-root branch point
singularities, �

�����������������
E� Eth

p
, that result in known ‘‘cusp’’ or

‘‘steplike’’ threshold anomalies [7,8]). What is surprising
in Figs. 2 and 3 is that enhancements in the integrated
yield, P�E���, appear for both even and odd n0. The
explanation of this result is that for odd (even) n0 for the
case of s (p) initial states, the amplitudes ��jmj�n �F;!� have
high-order branch point singularities [� �E� Eth�

k�1=2,
k 
 1], which lead to much less pronounced modifications
of Rn at � � �n0

�I�, but which nevertheless exist (and are
visible [15]). In summing over n to obtain the integrated
yield, P�E���, these small modifications of Rn for a given
n demonstrate a remarkable ‘‘coherence’’, resulting in
enhancements of P�E comparable to those for the
square-root singularities. These TP thus reveal the funda-
mental origin of the oscillations in P�E���, which were
discussed in Ref. [6] in terms of interferences between
electron trajectories. Moreover, it is somewhat surprising
that our simple model is able to describe not only the
general shapes of P�E��� for both H and Ar on a fine �
scale, but also reproduces such details as the alternations in
the heights of the peaks for Ar (cf. Fig. 3). This difference
from the flatter peak heights in H (cf. Fig. 2) results from
differences in the shapes of HHG spectra as functions of
harmonic number n for different (s or p) spatial symme-
tries of the respective ground state wave functions [11].
(This difference is caused, in part, by the relative increase
of the intensities of harmonics near the cutoff with increas-
ing � in the case of p-states [11]; this increase is seen also
in Fig. 1(b) of Ref. [3].) Well-resolved substructures in the
�-dependence of P�E��� in Fig. 3 are due to the fact that
the rates Rn for p-states are relatively small in the first
third of the plateau [11] (cf. the bottom panel in Fig. 3);
thus the dominant contributions to P�E��� come from only
a limited set of harmonics near the upper end of the �E
interval. (Apparently, the Fourier broadening of the low-
frequency few-cycle laser pulse smears these substructures
in the TDSE results [6]).

The intervals, ��, between peak values of P�E��� in
Figs. 2 and 3 are the intervals between two neighboring
‘‘threshold wavelengths’’ [cf. Eq. (5)], �ni�I� and �ni�1�I�,
corresponding to the closing of the nith and �ni � 1�th
ionization channels:

 �� � �ni�1�I� � �ni�I�: (6)
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FIG. 3 (color online). The same as in Fig. 2, but for Ar over a
different range of �. In the upper panel, our results (solid line)
are compared with the TDSE results [6] (dotted line).
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FIG. 2 (color online). Threshold phenomena in P�E��� (upper
panel) and in the yields of the individual harmonics in the
interval 20–50 eV (bottom panel) for the H atom, with I �
1:6� 1014 W=cm2. (cf. Fig. 2 in Ref. [6]).
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Both �ni�I� and �ni�1�I�may each be obtained in analytical
form as a real root of the cubic equation that results from
Eq. (5) (with Re�! �~Ia and either n0 � ni or n0 � ni �
1) upon rewriting it in terms of � �� 2�c=!�. Then,
substituting the expression for ni in terms of �ni , i.e., ni �
�ni�

~Ia � up��ni��=�2�@c�, into the expression for �ni�1 on
the right-hand side of Eq. (6) yields �� as a function of
�ni  �. Since the exact analytic result for �� involves ~Ia
and is somewhat cumbersome, we present only its asymp-
totic expression for the case of up � ~Ia:

 �� � �2�@c�=�3up� � ��2: (7)

The approximate result (7) is independent of the binding
energy, ~Ia; its accuracy depends on both � and I
(cf. Fig. 4). Our exact result (6) for �� for the H atom
agrees well with the TDSE results of Ref. [6] (where the
relation ��� ��2 was obtained using SFA arguments).

The information on the positions of �ni  �i and
�ni�1  �i�1 enables one to estimate the value of the
effective ionization potential, ~Ia. By solving the two equa-
tions that follow from Eq. (5) for n0 � ni and n0 � ni � 1
respectively, one obtains ~Ia in terms of �i, �i�1, and the
corresponding ponderomotive energies, u�i�p and u�i�1�

p :

 

~I a � �2�c@� �iu
�i�
p � �i�1u

�i�1�
p �=��i � �i�1�: (8)

Thus, for example, using the TDSE data for the positions
of the first two peaks in Fig. 2 of Ref. [6] for hydrogen,
we estimate �i and �i�1 as 1009� 0:2 nm and 1031�
0:2 nm. The corresponding result for ~Ia lies in the interval
~Ia � 8:4� 10:5 eV and is consistent with our choice of
~IH.

To conclude, our study of P�E��� for an exactly solvable
quantum model provides a fully quantum explanation for
the results of TDSE-based numerical studies [3,6]. Our
key finding is that threshold anomalies inherent to multi-
channel problems strongly affect the smooth powerlike
decrease of P�E��� with increasing � and permit measure-
ment of an effective (reduced) ionization potential in a

laser field. Although TDER results for P�E��� are exact
only for short-range potentials, our fine � scale results give
surprisingly good qualitative agreement with the TDSE
results [6]. Thus we tentatively conclude that the numerical
findings in the benchmark calculations of Ref. [6] provide
an important demonstration of intense laser-modified TP in
HHG for cases involving a Coulomb potential. In spite of
the known fact that SFA results for a zero-range potential
unexpectedly reproduce well many key features of ATI and
HHG in the plateau region for atoms [14], the similarity of
purely quantum, laser-modified TP for both Coulomb and
short-range potentials (for which the TP in field-free col-
lision problems are drastically different [8]) is surprising
and needs more detailed investigation. We suspect that a
strong laser field significantly suppresses the long-range
tail of a Coulomb potential, so that not only the plateau
features but also the quantum TP in laser-atom processes
are governed mostly by the angular momentum of an
initially bound electron and by its motion in a strong laser
field, rather than by the details of the binding potential.
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FIG. 4 (color online). Dependence of �� on � [cf. Eq. (6)] for
intensities I � 1:6� 1014 W=cm2 (thick lines) and I � 3:2�
1014 W=cm2 (thin lines). Dash-dot-dot lines: Eq. (7).
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