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We argue that there exists an infinite class of conformal field theories in diverse dimensions having a
universal ratio of the central charge c to the normalized entropy density ~c. The universality class includes
all conformal theories which possess a classical gravity dual according to the AdS/CFT correspondence.
From the practical point of view, the universality of c=~c provides an explicit test which can be applied to
determine whether a given critical point may admit a dual description in terms of classical gravity.
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Introduction.—Many useful quantum field theories are
either conformal field theories (CFT), or relevant deforma-
tions of a CFT. Among other things, such field theories
describe the interactions of all known elementary particles,
the scaling behavior near critical points in statistical me-
chanics, and the degrees of freedom on the string world
sheet.

There are several procedures via which one can arrive at
an interacting CFT. One way is by a critical limit of a
statistical-mechanical model (or, more generally, by fol-
lowing the renormalization group flow to the endpoint) [1].
Another possible way to arrive at a CFT is to start with a
Lagrangian formulation of a classically conformal theory
and use extra symmetry (such as supersymmetry) to argue
that the quantum theory must be conformally invariant as
well [2]. A prime example of such a CFT is the N � 4
supersymmetric Yang-Mills theory in 3� 1 dimensions.
Yet another way to arrive at a CFT is through a theory of
(quantum) gravity in anti–de Sitter (AdS) space, and the
AdS/CFT correspondence [3–6].

In the recent years, there has been a renewed interest in
CFTs due to their emergence in quantum critical phe-
nomena; in particular, relativistic CFTs were proposed as
the relevant language to describe critical quantum magnets
[7]. In turn, understanding CFTs in the language of classi-
cal gravity has been useful in the studies of quantum
critical transport [8]. This motivates further understanding
of the relation of the AdS/CFT correspondence to quantum
criticality.

In the context of the AdS/CFT correspondence, a CFT in
d dimensions has a dual description in terms of string orM
theory on AdSd�1 � X, for some compact space X. The
cosmological constant of AdSd�1 takes discrete values,
determined by the quantized fluxes of various fields on
X. It was realized some time ago [9] that the number of
such AdSd�1 � X solutions in string theory is enormous:
for d � 3 alone, different choices of X plus various fluxes
give rise to an estimated 10500 solutions—the so-called
string landscape [10]. It is believed that every such com-
pactification gives rise to a CFT; in other words, string
theory allows one to describe roughly 10500 different CFTs,

or 10500 different universality classes in three dimensions.
It is not unreasonable to ask: does such a multitude of CFTs
include any of the real-world critical points? For example,
is there a string dual description in AdS4 of the simplest
liquid-gas critical point (the Ising CFT in d � 3)? A sim-
pler question is whether there are interesting fixed points in
statistical-mechanical models whose description (in a suit-
able large-N limit) may be captured by Einstein gravity in
AdS. It is the purpose of this Letter to propose a criterion
for whether a given CFT may have a dual gravitational
description within the AdS/CFT correspondence.

Central charge and entropy.—The central charge c is a
fundamental quantity which characterizes a given CFT.
Given the standard definition of the energy-momentum
tensor T��, we define c via Cardy’s [11] parametrization
of the two-point function in d spacetime dimensions,
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where Sd � 2�d=2=��d=2� is the volume of the unit
�d� 1� sphere.

The value of c is one way to measure the number of
degrees of freedom in a CFT. A more conventional way to
measure the number of degrees of freedom in any system is
to heat it up and study its entropy as a function of tem-
perature. (The formulas are written for d Euclidean dimen-
sions, but the discussion can be repeated almost verbatim
for Minkowski CFTs with d� 1 dimensional space plus
time. For a Euclidean theory, heating up means compacti-
fying one of the d dimensions with periodic boundary
conditions for bosons and antiperiodic boundary condi-
tions for fermions. The temperature T is then the inverse
compactification radius.) In a d dimensional CFT, the
entropy density s � S=V (we take V ! 1) is proportional
to Td�1 because T is the only dimensionful parameter. The
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dimensionless proportionality coefficient measures the
number of degrees of freedom in the system. We write
this relation as

 s � ~c
��d=2�3

4�d=2��d�

�
4�
d

�
d d� 1

d� 1
Td�1; (2)

which defines the ‘‘normalized entropy density’’ ~c. The
dimension-dependent normalization factor is simply a con-
venient convention. In d � 2 dimensions, c and ~c are
related by conformal symmetry [12,13], so that (given
our conventions)

 d � 2 ) c � ~c; (3)

or s � �cT=3. It is essentially this relation between c and
~c in two-dimensional CFTs which allowed for the string
theoretic calculation of black hole entropy [14]. In three
dimensions, the ratio c=~c has been computed in the critical
O�N� sigma model at large N [15], with the result

 

c
~c
�
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2433��3�
� 0:937 909 . . . : (4)

However, a general relation between c and ~c in dimension
three and higher is unknown, and remains an important
open problem. We will now show that in all d � 3 dimen-
sional CFTs which admit a dual gravitational description
via the AdS/CFT correspondence, the central charge is
equal to the normalized entropy density,

 AdS =CFT ) c � ~c: (5)

This is the main result of the Letter, to be derived below,
and will be discussed further at the end of this Letter.

Entropy in AdS/CFT.—Within the AdS/CFT correspon-
dence, a d-dimensional CFT at finite temperature is de-
scribed by a D-dimensional black hole metric
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Here x � �x0;x� is d dimensional, L2 sets the value of the
cosmological constant, f�r� � 1� �r0=r�d where r � r0 is
the horizon, and ds2

X is the metric on X. The temperature of
the CFT is T � r0d=�4�L2�, and the zero-temperature
limit corresponds to r0 ! 0. The entropy is proportional
to the D� 2 dimensional area of the horizon, S �
AD�2=4GN where GN is the D-dimensional Newton’s con-
stant. Dividing by the (infinite) �d� 1� volume V, one
finds for the entropy density

 s �
1
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d

�
d�1
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where the �d� 1�-dimensional Newton’s constant is
1=G�d�1�

N � LD��d�1�
X Vol�X�=GN .

Central charge in AdS/CFT.—To find the central charge
c in dimension d � 3, one can use either the position or
momentum space representation of the correlation function

(1) (at T � 0). A convenient momentum space representa-
tion is [16]

 G��;���k� �
�
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�
2
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where P�� � ��� � k�k�=k2. The central charge is re-
lated to G�k2� by
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Choosing k along xi with i � 1 or 2, one has G12;12�k� �
G�k2�, and therefore it suffices to evaluate G12;12 to find the
central charge. According to the AdS/CFT prescription,
G12;12 is given by the second variation of the gravitational
action with respect to the boundary value of the metric
perturbation h12. The h12 perturbation decouples from all
other perturbations, and obeys the equation of motion
coming from the action of a massless scalar in the
AdSd�1 background,
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Here � � h1
2 (we require d � 3), the cosmological con-

stant is � � �d�d� 1�=L2, the second term in the action
is the standard Gibbons-Hawking boundary term, and con-
tact boundary terms are dropped on the right-hand side of
(10). The two-point correlation function for the massless
scalar can be evaluated using the standard AdS/CFT pre-
scription either in momentum space, following [4], or in
position space [5,17]. Restoring the overall factor of
1=16�G�d�1�

N in front of the action (10), one finds for the
central charge

 c �
d� 1

d� 1

Ld�1

4�G�d�1�
N

��d� 1��d=2

��d=2�3
; (11)

in agreement with [18]. Comparing this to ~c as found from
(7), we arrive at our main result in Eq. (5), c=~c � 1. For
N � 1 supersymmetric CFTs in d � 4, this relation was
discussed earlier in Ref. [19].

Discussion.—What we have shown is that every CFT in
dimension d � 3 which has an AdSd�1 gravity dual de-
scription must have a central charge equal to the normal-
ized entropy density. More precisely, this equality should
hold up to corrections which vanish in the limit in which a
classical gravitational description in AdS is valid, e.g., at
large N and large ’t Hooft coupling for N � 4 SYM
theory and variants thereof. Furthermore, we should note
that the reduction in (10) clearly fails for d � 2 as Einstein
gravity then has no propagating degrees of freedom; none-
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theless conformal invariance is sufficient in d � 2 to en-
sure c � ~c for all CFTs regardless of whether they admit a
dual gravitational description in AdS3. It is natural to ask if
there are ‘‘conventional’’ CFTs which also have c � ~c. It is
obvious that c cannot be equal to ~c in noninteracting (or
weakly interacting) theories when d is odd. This is because
in a free theory ~c is proportional to ��d�, while c contains
no such irrational factors. In even dimensions, this is no
longer the case and one may wonder whether free theories
may exist which satisfy c � ~c. We can test this in four
dimensions where, for a free theory with nv vector, nf
fermionic, and ns scalar degrees of freedom, we find that

 

�
c
~c

�
free

4d
�

3

8

ns �
3
2nf � 12nv

ns �
7
8nf � 2nv

; (12)

so that 3=8 � c=~c � 9=4. Note that c=~c � 3=4 for the free
limit of N � 4 SYM theory consistent with the known
difference of the entropy (and thus ~c) at strong and weak
coupling [6]. Importantly, we observe from this relation
that free theories do exist which satisfy c � ~c, provided
they contain vector degrees of freedom, such that 2ns �
nf � 8nv; the free limit of QED with two flavors is a
simple example. Thus we conclude that, at least in
d � 4, the relation c � ~c is necessary but not sufficient
for a given CFT to possess a gravity dual. However, when d
is odd, it is tempting to conjecture that the condition c � ~c
is not only necessary, but also sufficient for a given CFT to
have a gravity dual.

Let us also point out that a criterion similar to (5) is
known for d � 4 CFTs. In four dimensions, there are two
central charges, commonly denoted by c and a (which
characterize the response to two different curvature invar-
iants when the CFT is placed in curved space). It turns out
that the AdS/CFT formulation implies (assuming a certain
choice of normalization) that c � a in the limit that the
classical gravitational description is valid [20,21]. The
condition c � a has been considered as a means of classi-
fication [22] and is necessary for a d � 4 CFT to have a
dual gravity description in the appropriate large-N limit.
However, it also is not sufficient because there are ex-
amples (such as N � 4 super Yang-Mills theory) where
c � a holds at both strong and weak coupling [20,21],
while the gravitational description is only valid at strong
coupling. The condition c � ~c is clearly stronger than c �
a because (i) it applies in any dimension d � 3, not just in
d � 4, and perhaps more importantly (ii) it is in principle
capable of making a distinction between strongly and
weakly coupled theories because ~c is not protected by
supersymmetry.

In physical terms, the condition c=~c � 1 is a real-space
counterpart of the relation 	=s � 1=4�, where 	 is the
shear viscosity of any field theory with a dual AdS gravity
description [23,24]. Indeed, the Kubo formula for 	 relates
the shear viscosity to the thermal real-time correlation
function G12;12�k� at small timelike momentum. On the

other hand, the central charge is related toG12;12�k� at large
spacelike momentum, where the effects of temperature do
not matter. This analogy can be made more transparent if
we trade c for the absorption cross section 
�!� (in
D-dimensional Planck units) for graviton scattering by
the appropriate gravitational background [6] and contrast
	=s with the high-frequency limit of 
�!�=s / c=~c at
temperature T. [The fact that c=~c � 1 implies that

=�sGN� � f�d��!=T�d�1, where the constant f�d� is
purely a function of the spacetime dimension of the CFT.
For d � 3, 4, 6, the constant f�d� can be found from the
AdS duals of M2, D3, and M5 branes, using the results [6]
for 
�!�.] Indeed, the dual gravitational perturbation � �
h1

2 behaves as a massless scalar in Eq. (10), regardless of
the temperature [23]. However, within AdS/CFT, the ratio
	=s apparently defines a wider class than c=~c because
	=s � 1=4� for both CFTs and relevant deformations of
CFTs. In addition, 	=s � 1=4� applies universally for any
d � 3, without dimension-dependent normalization fac-
tors. However, from the point of view of finding a possible
gravity dual for a given CFT, the condition c=~c � 1 has a
significant advantage over 	=s � 1=4� because it in-
volves only equilibrium quantities which are easier to
compute than real-time response functions.

Focusing on 3-dimensional systems, relevant to real-
world critical points, we find it interesting that the
large-N result (4) for c=~c in theO�N�model is numerically
very close to 1, the value required for the existence of a
gravity dual. With regard to the proposal of Klebanov and
Polyakov [25]—that the large-N dual is a higher-spin
gauge theory in AdS—this result amounts to a prediction
for the bulk spin-two sector and implies a (small) quanti-
tative difference with pure Einstein gravity. At the opposite
end of the spectrum, the critical Ising model corresponds to
N � 1, and it would clearly be interesting to see if 1=N
corrections [26], known to be generically rather large [27],
were to modify Eq. (4) bringing c=~c closer to one (c=~c
could also be computed directly at the Wilson-Fisher fixed
point using the epsilon expansion). However, the possibil-
ity of c=~c � 1 in this case would go against the general
expectation that the critical Ising model has too few de-
grees of freedom to possess a classical gravity dual. This is
because every CFT with a classical gravity dual has a
finite-volume phase transition [28] as a function of T,
and therefore must have an infinite number of degrees of
freedom. Nevertheless, one hopes that suitable limits exist
in which these CFTs are close to real-world examples. It
would be interesting to investigate more generally the
corrections to c=~c � 1 arising from quantum corrections
to classical gravity.

Finally, we have seen that AdS gravity provides us with
a multitude of non-Gaussian fixed points with exactly the
same value of c=~c. However, it is far from obvious how
these fixed points are related to each other; in particular,
they have different symmetries. While Monte Carlo simu-
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lations should be tractable in many cases, we are not aware
of numerical results for c=~c at non-Gaussian fixed points in
any three-dimensional lattice model. Thus, going beyond
the classical gravity approximation, as a related question
we may ask: are there non-Gaussian fixed points in three
dimensions that share the same value of c=~c (not neces-
sarily equal to one)? A positive answer would suggest a
novel notion of universality, which is not related to sym-
metry, but may be related to (quantum) gravity in anti–
de Sitter space.
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