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The new ekpyrotic model is an alternative scenario of the early Universe which relies on a phase of slow
contraction before the big bang. We calculate the 3-point and 4-point correlation functions of primordial
density perturbations and find a generically large non-Gaussian signal, just below the current sensitivity
level of cosmic microwave background experiments. This is in contrast with slow-roll inflation, which
predicts negligible non-Gaussianity. The model is also distinguishable from alternative inflationary
scenarios that can yield large non-Gaussianity, such as Dirac-Born-Infeld inflation and the simplest
curvatonlike models, through the shape dependence of the correlation functions. Non-Gaussianity there-
fore provides a distinguishing and testable prediction of New Ekpyrotic Cosmology.
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The ekpyrotic scenario is a candidate theory of early-
Universe cosmology. Instead of invoking a short burst of
accelerated expansion from a hot initial state, as in infla-
tion, the ekpyrotic scenario relies on a cold beginning
followed by a phase of very slow contraction. Despite
such diametrically opposite dynamics, both models predict
a flat, homogeneous, and isotropic Universe, endowed with
a nearly scale-invariant spectrum of density perturbations,
and are, therefore, equally successful at accounting for all
current cosmological observations.

An important drawback of the original ekpyrotic theory
[1] is how to avoid the big crunch singularity without
introducing ghost instabilities. Moreover, the matching of
perturbations through the bounce is ambiguous [2].

Both of these issues have been resolved in the recently
proposed New Ekpyrotic scenario [3]. In [3], we derived a
fully nonsingular bounce within a controlled and ghost-
free four-dimensional effective theory using the ghost con-
densation mechanism [4]. Moreover, the curvature pertur-
bation on uniform-density hypersurfaces, � , acquires a
scale-invariant spectrum well before the bounce, thanks
to an entropy perturbation generated by a second scalar
field [3,5,6]. Thus, New Ekpyrotic Cosmology appears to
be a consistent alternative to the inflationary scenario.

A distinguishing prediction lies in the tensor spectrum
[1]: inflation predicts scale-invariant primordial gravity
waves, whereas ekpyrosis does not. Detecting tensor
modes from cosmic microwave background (CMB)
B-mode polarization could rule out the ekpyrotic scenario,
whereas an absence of detection would not discriminate
between the two models.

In this Letter, we focus on another key observable: the
non-Gaussianity of primordial density perturbations. We
show that New Ekpyrotic Cosmology generically predicts
large non-Gaussianity, potentially just below current sen-
sitivity levels and detectable by near-future experiments.

We calculate the 3-point and 4-point functions. For
typical parameter values, the amplitude of the 3-point

function is generically large, with fNL around the current
Wilkinson microwave anisotropy probe (WMAP) bound
[7]: �36< fNL < 100. That is, assuming all parameters
are O�1�, fNL approaches the limits of this bound, depend-
ing on the sign of a parameter. These values are well above
the expected sensitivity of the Planck experiment: jfNLj &

20. The amplitude of the 4-point function is also generi-
cally large: �NL � 104, which is again near the estimated
WMAP bound and within the reach of Planck: �NL & 600
[8].

This is in stark contrast with the highly Gaussian spec-
trum predicted by slow-roll inflation. Comparably large
non-Gaussianity does arise in non-slow-roll models, such
as Dirac-Born-Infeld (DBI) inflation [9], and whenever the
precursor of density fluctuations is a light spectator field,
such as in the curvaton [10,11] or modulon scenarios
[12,13]. However, as we will see, New Ekpyrosis predicts
a different shape dependence in momentum space for the
3- and/or 4-point spectrum than the simplest such models.

Non-Gaussianity therefore offers a distinguishing pre-
diction of New Ekpyrotic Cosmology, potentially testable
in CMB experiments within the next few years.

New ekpyrotic cosmology.—As with inflation, ekpyrosis
relies on a scalar field � rolling down a potential V ���.
Instead of being flat and positive, however, here V ���
must be steep, negative, and nearly exponential in form.
For concreteness, we take

 V ��� � �V0e��=�; (1)

where � �
���
�
p
MPl and �� 1. The Friedmann and scalar

field equations then yield a background scaling solution,

 a�t� � ��t�2�; ���t� � � log
�

V0

2�2�1� 6��
t2
�
; (2)

with Hubble parameter H � 2�=t. Since �� 1, this de-
scribes a slowly-contracting Universe with rapidly increas-
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ing H, again in contrast with the rapid expansion and
nearly constant H in inflation.

In single-field ekpyrosis, fluctuations in � acquire a
scale-invariant spectrum. As we review shortly, this traces
back to the fact that the above solution satisfies �V ;�� �

�2=t2. However, this contribution exactly projects out of
� , leaving the latter with an unacceptably blue spectrum.
Since � is conserved on super-horizon scales barring en-
tropy perturbations, it is generally expected to match con-
tinuously through the bounce, although stringy effects
could alter this picture [2].

New Ekpyrotic Cosmology introduces a second field, �,
as the progenitor of the scale-invariant perturbation spec-
trum [3,5]. This field has no dynamics during the ekpyrotic
phase and remains approximately fixed at �� � 0. However,
as we describe below, its fluctuations generate a scale-
invariant spectrum of entropy perturbations, which gets
imprinted onto � at the end of the ekpyrotic phase.

An essential condition in obtaining a scale-invariant
spectrum is that at �� � 0, the curvature of the potential
be nearly the same along the � and � directions: �V;�� �
�V;��. An example of such a potential is

 V��;�� � V ���
�

1	
�2

2�2 	
�3

3!

�3

�3 	
�4

4!

�4

�4 	 . . .
�
:

(3)

The higher-order � terms are naturally expected to be
suppressed by the same scale � as the quadratic term,
hence the form (3). For simplicity, we take �3; �4; . . . to
be constants. While potential (3) yields a slightly blue
spectral tilt, a more general potential is presented in [3]
which allows for the observed red tilt without altering the
conclusions for non-Gaussianity arrived at in this Letter.
Note that the required field trajectory lies along an unstable
point. However, a pre-ekpyrotic, stabilizing phase can
easily create initial conditions so that this trajectory is
arbitrarily close to the tachyonic ridge [3].

Power spectrum for �.—Since our space-time back-
ground is nearly static, we ignore gravity in studying �
perturbations. To linear order, the Fourier modes ���0�k
around �� � 0 satisfy a free field equation with time-
dependent mass �V;�� � �V;�� � �2=t2:

 

����0�k 	
�
k2 �

2

t2

�
���0�k � 0: (4)

Assuming the usual adiabatic vacuum, we find

 ���0�k �
e�ikt�����

2k
p

�
1�

i
kt

�
: (5)

On super-Hubble scales, k��t� � 1, the power spectrum,
defined by h���0�k ��

�0�
k0 i � �2��

3�3� ~k	 ~k0�P��k�, is

 k3P��k� �
1

2t2
; (6)

which is scale invariant. Including gravity and departing
from the pure exponential form (1) results in small devia-
tions from scale invariance. This can yield a small red tilt,
consistent with current CMB observations [3].

Evolution of �.—We focus for simplicity on the regime
where all relevant modes are well outside the horizon, k�
aH. In the small-gradient approximation, the metric can be
written as ds2 � �N 2dt2 	 e2�� ~x;t�a2�t�d~x2 [14], where
N is the lapse function, and � is the curvature perturba-
tion. The evolution of � on uniform-density hypersurfaces
is governed by

 

_� � 2H
�V

_��2
� 2�V

; (7)

where �V � V��;�� � V� ��; ���. A key simplification is
that �� has a steep blue spectrum at long wavelengths and,
hence, can be neglected. Thus, for the potential (3), we
have �V � V � �����2=2�2 	 . . . .

To proceed further, one needs an expression for �� to
higher-order than the ‘‘free’’ part ���0�. To do this, we
solve ���	 �V���� � 0, valid at long wavelengths, per-
turbatively: �� � ���0� 	 ���1� 	 . . . . To lowest
order, this equation reduces to (4) in the limit k! 0.
The next order, ���1�, satisfies ����1� 	 �V����

�1� 	
�V;������

�0��2=2 � 0. Using (2) and (3), and ���0� � 1=t,
we find

 �� � ���0� 	
�3

4�
����0��2 	 . . . : (8)

Substituting into (7), one can integrate to obtain

 �ek �
1

2

�
���0�

MPl

�
2
	

5�3

18
���
�
p

�
���0�

MPl

�
3
	 . . . : (9)

The ekpyrotic phase must eventually end if the Universe
is to undergo a smooth bounce and reheat into a hot big
bang phase. This is achieved by adding a feature to the
potential (3) which eventually pushes � away from the
tachyonic ridge [3]. Denote the time at which ekpyrosis
stops as tend. For simplicity, we model this with V;� sud-
denly becoming nonzero and nearly constant at � � 0.
Denote this constant by V;�j. The exit phase is assumed
to last for a time interval �t which is short compared to a
Hubble time: jHendj�t� 1. This will be the case provided
the potential satisfies

 �� �
H4

endM
2
Pl

V;�j
2 & 1: (10)

The exit phase generates an additional contribution to � .
To compute this in the rapid-exit approximation, we can
treat the right-hand side of (7) as approximately constant.
In evaluating this constant, note that, to leading order
in ��, we have �V � V;�j�� � 
H2

endMPl��=
��������p .

(Higher-order terms in �� yield small corrections to (9)
and are therefore negligible.) Thus, � changes from �ek by
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an amount �c during the exit, given by

 �c � �2
���
�
p
	
���tend�

MPl
; (11)

where 	 � jHendj�t
�����������
�=��

q
. Noting that to lowest order

�� � ���0� and substituting (6) evaluated at tend, it follows
from (11) that the � power spectrum is

 k3P� �k� �
4�	2

M2
Pl

k3P��k� � 	2 H2
end

2�M2
Pl

: (12)

Up to the prefactor 	2, this is identical to the inflationary
result, with � playing the role of the usual slow-roll pa-
rameter. In the exit mechanism of [3],	 denotes the overall
change in angle in the field trajectory: 	 � �
.

Let us pause to discuss the parameter values that satisfy
the CMB constraint k3P� �k� � 10�10. Although H passes
through zero at the bounce, as argued in [3] its magnitude is
essentially the same at the beginning of the hot big bang
phase as it was at tend, the end of the ekpyrotic phase. In
other words, Hend sets the reheat temperature in the ex-
panding phase. For GUT-scale reheat temperature, we have
Hend=MPl � 10�6. Meanwhile, 	 is a free parameter
whose value depends on the exit dynamics. For the explicit
exit mechanism of [3], however, the natural value is 	�
O�1�. In this case, setting k3P� �k� � 10�10 implies � �
10�2. We will henceforth take 	 � 1 and � � 10�2 as
fiducial parameter values.

Combining (11) with (8) and (9) yields

 ��x� � �c�x� 	
1

8�	2 �
2
c �x� �

5�3

144�2	3 �
3
c �x� 	 . . . : (13)

The exit from the ekpyrotic phase is followed by a ghost
condensate phase which leads to a nonsingular bounce and
reheating. Meanwhile, � gets stabilized and further evolu-
tion is governed by the single scalar �. It follows that � is
conserved through the bounce and emerges unscathed in
the hot big bang phase.

3-point function.—The 3-point � correlation function in
New Ekpyrotic Cosmology is given by [3]
 

h�k1
�k2
�k3
i � �2��3�3� ~k1 	 ~k2 	 ~k3�

�
6

5
fNLfP� �k1�P� �k2� 	 perm:g: (14)

This local shape [15] is consistent with ��x� of the form
��x� � �g�x� 	

3
5 fNL�

2
g�x�, where �g is Gaussian. The cor-

relation function is evaluated at tend ignoring gravity.
Thus, the 3-point function is fully specified by fNL [16].

This parameter receives two contributions. To begin with,
the non-Gaussianity of ��, due to its cubic interaction in
(3), is inherited by � through (11). Following Maldacena
[17], the �� 3-point function is given by

 

h��1��2��3i � �i
Z tend

�1
dsh0j��1��2��3;H int�s��j0i

	 c:c:; (15)

where ��i � ���xi�, and H int is the cubic interaction
Hamiltonian from (3): H int � V � ����3�3=3!�3. An ex-
plicit calculation yields the intrinsic contribution

 fint
NL � �

5

24

�3

	�
: (16)

The � sign corresponds to choosing V;�j to be 
.
The second contribution comes from the nonlinear rela-

tion between �� and � embodied in (11) and (13). Even if
�� were Gaussian, this nonlinearity would make � non-
Gaussian. This conversion contribution to fNL is

 fconv
NL �

5

24

1

	2�
: (17)

Summing (16) and (17) yields a combined fNL:

 fNL � fint
NL 	 f

conv
NL �

5

24	2�

�
1� �3	

�
: (18)

Since this is inversely proportional to �� 1, non-
Gaussianity tends to be large in New Ekpyrotic
Cosmology. Related ekpyrotic models [6,18] also give
fNL � ��1. (A ghost condensate bounce and second scalar
field are also invoked in [6], albeit without an explicit
conversion mechanism, and while the two-field ekpyrotic
phase of [18] is similar to ours, the bounce physics remains
unspecified.) This is in sharp contrast with slow-roll in-
flation, where fNL is proportional to the slow-roll parame-
ters and therefore unobservably small. For concreteness,
consider our fiducial model with GUT-scale reheating,
	 � 1 and � � 10�2. Taking, for example, the � sign in
(16) and choosing 2:728>�3 >�3:8 yields fNL within
the present WMAP 2� range: �36< fNL < 100. Thus,
�3 �O�1� yields a non-Gaussian signal near the WMAP
bound. Lower reheating temperatures correspond to
smaller � and, therefore, larger non-Gaussian signal. Of
course, jfNLj can always be made smaller by taking 	, � to
be larger and/or by suitably choosing �3.

4-point function.—The connected 4-point function,

 h�k1
�k2
�k3
�k4
i � �2��3�3� ~k1 	 ~k2 	 ~k3 	 ~k4�

� T�k1; k2; k3; k4� 	 T
0�k1; k2; k3; k4��;

(19)

involves two different shape functions, evaluated at tend:
 

T �
1

2
�NLfP� �k1�P� �k2�P� �k14� 	 23perm:g;

T0 � �NLfP� �k1�P� �k2�P� �k3� 	 3perm:g;
(20)

where ~kij � ~ki 	 ~kj. Thus, T and T0 are specified, respec-
tively, by the �NL and �NL parameters. (Note that �NL is
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proportional to the f2 parameter of [8].) Equations (19) and
(20) are consistent with ��x� of the form ��x� � �g�x� 	������
�NL
p

2 �2
g�x� 	

�NL

6 �3
g�x�, where �g is Gaussian. Note that we

can obtain �NL immediately by simply comparing its defi-
nition with that of fNL:

 �NL �
36

25
f2

NL �
1

16	4�2

�
1� �3	

�
2
: (21)

This was also checked by explicit computation.
Meanwhile, �NL receives two contributions. The first

contribution arises from cubic and quartic terms in � in
the potential (3). An explicit calculation gives

 �int
NL �

2�4 	 3�2
3

40	2�2 : (22)

The second contribution is encoded in the �2
c and �3

c terms
in (13). Comparing with (19), we obtain

 �conv
NL � �

5�3

24	3�2 : (23)

Combining the above results, we find

 �NL � �int
NL 	 �

conv
NL �

�3�9�3	� 25� 	 6�4	

120	3�2 : (24)

Both �NL and �NL are proportional to ��2 and therefore
also tend to be relatively large. Note that �NL is always
positive, whereas �NL can have either sign. For instance,
our fiducial parameter values for GUT-scale reheating with
�3, �4 �O�1� yield �NL � 104, which is around the esti-
mated WMAP bound [8]. Lower non-Gaussianity can
again be achieved by taking larger	, � and/or by a suitable
choice of �3 and �4.

Discussion.—The simplest inflationary models, consist-
ing of one or more slowly-rolling scalar fields, all predict
negligible 3-point and higher-order correlation functions.
Non-Gaussianity therefore offers a robust test to distin-
guish New Ekpyrotic Cosmology from slow-roll inflation.

Significant inflationary non-Gaussianity can be obtained
in non-slow-roll models, such as DBI, albeit with a distin-
guishable 3-point shape dependence [15].

Large non-Gaussianity may also be achieved in the
curvaton scenario. While the 3-point function is also local,
there is an essential difference at the 4-point level. In the
simplest curvaton model, the progenitor of density pertur-
bations is a free field. Thus, �NL � fNL [11]. In New
Ekpyrosis, however, both �NL and �NL are �f2

NL, leading
to a distinguishable 4-point shape dependence. More in-
tricate curvaton models can also yield large �NL. Similarly,
for general modulon scenarios [13].

Near-future non-Gaussianity observations will, there-
fore, test the new ekpyrotic paradigm and can potentially
distinguish it from its inflationary alternatives.
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