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We propose to apply stimulated adiabatic passage to transfer atoms from their ground state into
Rydberg excited states. Atoms a few micrometers apart experience a dipole-dipole interaction among
Rydberg states that is strong enough to shift the atomic resonance and inhibit excitation of more than a
single atom. We show that the adiabatic passage in the presence of this interaction between two atoms
leads to robust creation of maximally entangled states and to two-bit quantum gates. For many atoms, the
excitation blockade leads to an effective implementation of collective-spin and Jaynes-Cummings–like
Hamiltonians, and we show that the adiabatic passage can be used to generate collective Jx � 0
eigenstates and Greenberger-Horne-Zeilinger states of tens of atoms.
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Entanglement is a central property of quantum mechani-
cal systems and an important resource for applications in
quantum information and quantum metrology. En-
tanglement is a subject of broad theoretical interest, and
experimental implementations in various systems have
been demonstrated. One scheme for creation of entangle-
ment and quantum gates between neutral atoms utilizes the
large dipole moments of highly excited Rydberg states
resulting in a dipole-dipole interaction which is strong
enough to shift the atomic energy levels and prevent
more than one atom from being excited to the Rydberg
state by a resonant laser field [1,2]. In alkali atoms Rydberg
states with principal quantum number n > 70 have life-
times * 100 �s and experience a dipole-dipole interaction
strength, E=@, above 100� 2� MHz when atoms are sepa-
rated less than 5 �m [3]. The accompanying suppression
of excitation for n up to 80 [4,5] and the influence of the
excitation blockade on coherent collective dynamics [6]
were observed in cold gases.

We propose to combine the Rydberg blockade mecha-
nism with the rapid adiabatic laser pulse sequence known
from stimulated Raman adiabatic passage (STIRAP) [7–
10]. We consider atoms with two lower levels and a
Rydberg level in a ladder structure coupled by two resonant
laser fields with Rabi frequencies �1 and �r as shown in
Fig. 1(a). The STIRAP process applies the ‘‘counterintui-
tive’’ pulse sequence of Fig. 1(b) to transfer population
from the ground state j1i to a highly excited Rydberg state
jri by adiabatically following [11] a dark state which never
populates the intermediate state j2i. If we assume a relative
phase, �r�t�, between the Rabi frequencies �1 and �r,
a single atom exposed to the fields follows the dark
state superposition, jD1i � cos�j1i � sin�ei�r jri, where
tan� � �1=�r expresses the relative strength of the two
laser fields. Since the dark state has zero energy, there is no
dynamic phase accumulated during the process, but
if �r varies, jD1i acquires the geometric phase, �1 �
�
R

sin2�d�r [12,13]. A controlled geometric phase shift

on state j1i can be implemented if the phase difference
between the fields evolves between the STIRAP pulses and
a second inverted set of pulses, shown in Fig. 1(c). For
atoms with a further logical state j0i such a pulse sequence
enables robust geometric phase gates and other one-bit
gates [13].

With more atoms the Rydberg blockade comes into play,
but we may still identify dark states. For two atoms,
initially in the product state j11i and subject to the same
interaction with the two resonant laser fields �1 and �r,
the evolution preserves the symmetry under interchange
of atoms, and hence it is sufficient to consider the
Hamiltonian in the symmetric two-atomic basis fj11i; 1��

2
p �

�j1ri � jr1i�; 1��
2
p �j12i � j21i�; jrri; 1��

2
p �j2ri � jr2i�; j22ig,

 

H�t� �
@

2

0 0
���
2
p

��1 0 0 0

0 0 ��r 0 ��1 0���
2
p

�1 �r 0 0 0
���
2
p

��1

0 0 0 2E=@
���
2
p

��r 0

0 �1 0
���
2
p

�r 0
���
2
p

��r

0 0
���
2
p

�1 0
���
2
p

�r 0

26666666666664

37777777777775
;

(1)

where E denotes the energy shift of the state jrri due to the
dipole-dipole interaction. This Hamiltonian has one dark
state for the two-atom system

 jD2i �
1��������������������������������

cos4�� 2sin4�
p ��cos2�� sin2��j11i

� cos� sin�ei�r�j1ri � jr1i� � sin2�j22i	: (2)

We first assume ei�r � 1 and apply the counterintuitive
pulse sequence of Fig. 1(b). Initially cos� � 1 and the
system is in jD2i � j11i. Adiabaticity ensures that we
remain in jD2i and after the pulses sin� � 1 and the system
is in
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 jD2i �
1���
2
p ��j11i � j22i�: (3)

Equation (2) shows that while the STIRAP process in the
single atom case ensures that j2i is never populated, due to
the Rydberg blockade the pair of atoms is adiabatically
steered into a state populating j22i. Moreover, (3) is a
maximally entangled state of the two atoms, generated
robustly irrespective of the precise pulse shapes, field
strengths, and the precise value of the Rydberg interaction
energy. Figure 2(a) shows the evolution of populations for
realistic experimental parameters, obtained from a numeri-
cal propagation of the Schrödinger equation (see caption).
The decay due to the finite lifetime of the jri states,
populated during the process, is incorporated as a decay
out of the system, whereas the j1i and j2i states are treated
as long-lived hyperfine sublevels. This implies that if the
levels are coupled by single photon transitions, the field
coupling j1i and j2i will have a frequency in the radio

frequency range, while the laser field coupling j2i and jri
has a wavelength 
 300 nm for Cs and Rb. Alternatively
the couplings can be obtained with two-photon transitions
involving four optical fields. By appropriately choosing the
laser detunings to compensate for the time-dependent ac
Stark shifts during the pulses, the corresponding five level
system of equations with two intermediate optically ex-
cited states can be effectively reduced to the present three-
level ladder system.

To investigate the criterion of adiabaticity and the role of
the Rydberg interaction energy E, in Fig. 2(b), we show the
fidelity of the creation of the entangled state, F �
jhD2j fij

2, where j fi is the final state calculated by
propagation of the state vector with the time-dependent
Hamiltonian (1). The simulations show that, as long as E is
sufficiently large to block the population of states with
more than one Rydberg excitation, the exact value of E is
not important. With Rabi frequencies �max;1=2� �
�max;r=2� � 10 MHz, a Rydberg energy shift of E=@ �
50� 2� MHz is sufficient. The time window where jri is
populated is determined by the pulse width and it is desir-
able to use the smallest possible width that does not violate
adiabaticity, yielding a total time of entanglement genera-
tion of 3–4 �s, which is short compared with the radiative
lifetime of the highly excited Rydberg state * 100 �s.

The two-atom entanglement scheme can be modified to
create a two-qubit phase gate. To this end we apply a
second STIRAP sequence with phase shifted Rabi frequen-
cies and the pulses in reversed order [cf. Fig. 1(c)] that
transfers the population back to the j11i. With a nonvan-
ishing relative phase �r�t� between �1 and �r the dark
state (2) acquires the geometric phase [12]

 �2 � �
Z cos2�sin2�

cos4�� 2sin4�
d�r:

When we supplement the atomic level scheme with another
qubit state j0i, which is uncoupled from the STIRAP
pulses, the gate performed by the two STIRAP processes
amounts to multiplication of all two-bit register states by
phase factors corresponding to a controlled two-qubit
phase gate with phase �’ � �2 � 2�1. �2 is only acquired
when the pulses overlap, while �1 is acquired between the
two pulse sequences, and �’ can, e.g., be controlled by
adjusting �T.

We now show that when more than two atoms in j1i are
subject to the STIRAP pulse sequence they also become
entangled. Provided all atoms are localized within a region
of a few �m, the transition towards the Rydberg states is
restricted to the coupling of collective states with either
zero or one Rydberg atom and we implement this by
truncating the basis so it only includes states with zero or
one atom in the jri state. We write the symmetric basis
states of the system as fjn1; n2 � N � n1; 0i; jn1; n2 �
N � n1 � 1; 1ig, where N is the total number of atoms,
n1 and n2 the number of atoms in j1i and j2i, and 0 or 1
indicates if jri is populated with zero or a single atom. The

FIG. 2. (a) Time evolution of the population in j11i, 1��
2
p �j1ri �

jr1i� and j22i. (b) Fidelity of the entanglement creation as a
function of pulse width for different values of dipole-dipole
interaction E. j fi was found by propagating the Schrödinger
equation (1) with initial state j11i. We show the norm square of
the overlap with the target state jD2i. The laser pulses are
modeled by sin2 pulses, �j�t� � �max;jsin2�

��t�tsj�
2� � for tsj < t <

tsj � 2�, where tsj is the instant of time when the pulse starts
and � the FWHM. The simulations are made with parameters
�max;1=2� � �max;2=2� � 10 MHz, �t � 1:1 �s, lifetime of
the jri state, �r � 100 �s, and in (a) � � 1:5 �s and E=@ �
100� 2� MHz.

∆

∆∆

σ

σ

FIG. 1. (a) Three-level ladder system and two laser fields with
Rabi frequencies �1 and �r. (b) STIRAP pulse sequence. The
FWHM of each pulse is � and the delay between pulses within
one process is �t. (c) Pulse sequence consisting of two STIRAP
processes separated by �T in time.
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basis consists of N � 1 states with no Rydberg excitation
and N with a single excitation. The interaction with
the radiation fields �1 and �r,

PN
j�1�

1
2 ��1�t�j2ijh1j �

�r�t�jrijh2j � h:c:�, can now be rewritten

 H�t� � HJx�t� �HJC�t�; (4)

with variable strengths, representing the coupling by the
fields driving the lower and the upper transition, respec-
tively. The dynamics of the lower levels can be rewritten in
a collective spin description, and in the accompanying
Schwinger oscillator description,

 HJx�t� � �@�1�t�Jx�t� � �
1
2@�1�t��a

y
1a2 � a1a

y
2 �; (5)

where a�y�i are annihilation (creation) operators, with con-
ventional oscillator commutator relations, for the number
of atoms in jii. The upper transition is described by

 HJC�t� � �
1
2@�r�t��a2�

� � ay2�
��; (6)

where we use Pauli matrices, �� and ��, to describe the
transfer of population between states with zero and one
Rydberg excitation in the atomic ensemble. This Hamil-
tonian is the quantum optical Jaynes-Cummings (JC)
Hamiltonian, introduced originally to describe the resonant
interaction between a two-level atom and quantized light
[14]. JC dynamics has been implemented in strong cou-
pling cavity QED experiments, where nonclassical states
of light, such as Fock states and quantum superposition
states, are produced efficiently [15]. HJC also describes the
motion of laser driven trapped ions where it has been used
to generate various nonclassical states [16,17]. Following
these proposals, JC dynamics is sufficient to produce a
variety of interesting states of an atomic ensemble by the
Rydberg blockade.

The Hamiltonian in (4) has a dark state with zero valued
energy eigenvalue throughout the STIRAP process. This
follows because the ‘‘parity’’ operator � � ��1�n̂2 , which
inverts the sign of the operators a2 and ay2 , anticommutes
with H, H� � ��H. Any eigenstate j i of H with en-
ergy eigenvalue E then has a partner �j i with eigenvalue
�E and the energy eigenvalue spectrum is symmetric
around zero. The number of eigenstates is odd because N
atoms induce N � 1 different states with no atoms in jri
and N states with one atom in jri, and hence there must
always be a state with eigenvalue zero. The full curves in
Fig. 3 show the 13 energy eigenvalues for 6 atoms found
from a numerical diagonalization of Eq. (4), and they
clearly confirm the existence of the dark state throughout
the pulse sequence.

The STIRAP process starts with �1 � 0 and hence
initially H�t� � HJC�t� � �

1
2 @�r�t��a2�� � a

y
2�
�� with

the eigenvalues f0;� 1
2 @�r�t�

��������������
n2 � 1
p

g, as shown with the
squares in Fig. 3. The dark state is jn1 � N; n2 � 0; nr �
0i with all atoms in state j1i. Adiabaticity ensures that we
remain in the dark state of the full Hamiltonian, and when
�1 is turned on and �r reduced, the system ends up in the

dark state of H�t� � HJx�t� � �@�1�t�Jx. In this state, the
system can have either no or a single Rydberg excitation
leaving K � N or K � N � 1 atoms in the j1i and j2i
states. The eigenvalues of ��1�t�Jx are ��1�t��
f�K=2;�K=2� 1; . . . ; K=2� 1; K=2g and E � 0 occurs
for K even. Figure 3 shows the eigenvalues of ��1�t�Jx
when jri is not populated (bullets) and when one atom is
excited to jri (triangles) for N � 6. For N even, the dark
state does not populate jri, while for N odd, the final dark
state is the state with one Rydberg excitation and N � 1
atoms in the Jx � 0 eigenstate. In general we write the final
dark state

 jDNi �

�
jJx � 0i if N is even
�jJx � 0i � jri�sym if N is odd;

(7)

where �
�sym indicates that the state is symmetrized with
respect to jri, such that any atom is Rydberg excited with
equal weight.

The STIRAP protocol produces a jJx � 0i multiparticle
entangled state, and precisely this state reaches the
Heisenberg limit of phase sensitivity in entanglement en-
abled precision metrology [18,19]. If the two lower states
are, e.g., the hyperfine states of the Cs clock transition, the
presented entanglement scheme thus constitutes an ideal
preparation of the system for an atomic clock. Note that
jJx � 0i is produced even when no knowledge of the exact
atom number is available implying, e.g., that a mixed
initial state is transferred to a mixed final state with Jx �
0 exactly fulfilled. To avoid decay into the states j1i and
j2i, which would slightly perturb the Jx � 0 property, one
may field ionize the Rydberg excited component after the
STIRAP process.

The state (7) has none or a single Rydberg excited atom,
depending on the number of atoms initially in the j1i state,
n1, being even or odd. Following [20], this can be used to
prepare a Greenberger-Horne-Zeilinger (GHZ) state [21]
of the system. We first prepare all our atoms in a spin
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FIG. 3 (color online). Eigenvalues of H�t�=@ of (4) for N � 6.
Black solid curves show the results of a numerical diagonaliza-
tion of the full Hamiltonian. The squares on the left show the
analytical eigenvalues of HJC�t�=@ and the bullets and triangles
on the right show the analytical eigenvalues of HJx �t�=@ for zero
and one Rydberg excitation, respectively. Parameters used are
�max;1=2� � 10 MHz, �max;r=2� � 10 MHz, � � 1:5 �s,
�t � 1:1 �s.
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coherent state, i.e., a product of superpositions of two
ground states j0i and j1i,

 

�
j0i � j1i���

2
p

�
�N
�

XN
n1�0

������������
N
n1

� �s �
1���
2
p

�
N
jn0; n1i; (8)

where n1 is the number of atoms in the state j1i and n0 �
N � n1. Applying the pair of STIRAP processes in
Fig. 1(c) to the entire system transfers each component
jn0; n1i to a state with none or a single Rydberg excitation
and back. An energy shift of the Rydberg state or a phase
shift of the laser coupling the Rydberg state can now be
used to provide states populating the Rydberg state with
a phase, i � ei�=2. We can write this phase, ei��n1� �

�ei�=4 � ��1�n1e�i�=4	=
���
2
p

leading after the second
STIRAP process to the final GHZ state,

 j fi �
XN
n1�0

������������
N
n1

� �s �
1���
2
p

�
N
ei��n1�jn0; n1i

�
ei�=4���

2
p

�
j0i � j1i���

2
p

�
�N
�
e�i�=4���

2
p

�
j0i � j1i���

2
p

�
�N
: (9)

We have investigated the preparation of the jJx � 0i (7)
and GHZ (9) states using the sin2 pulses and taking into
account the coupling to states with two Rydberg excited
atoms and the accompanying energy shift. For N � 10 we
find a population of the jJx � 0i or GHZ state above 0.995
for peak Rabi frequencies of 10� 2� MHz, a Rydberg
interaction, E=2� � 400 MHz, and pulse widths of 50 �s.
These numbers require the use of Rydberg levels with
n � 100 where a lifetime above 1 ms can be achieved
for atoms in a cryogenic environment [3]. Increasing N
further will require a stronger Rydberg interaction to pre-
vent multiple Rydberg excitations as well as longer pulses
and higher Rabi frequencies to ensure adiabaticity. As
indicated by the energy spectra in Fig. 3, there is a critical
crossing region at t ’ 0:5 �s, where special care should be
taken, and we anticipate that control theory may be used to
find optimal pulse shapes.

In conclusion, we have demonstrated that the Rydberg
excitation blockade mechanism in conjunction with rapid
adiabatic passage processes provides rich opportunities to
prepare two-atom and multiatom entangled states with
confined samples of atoms, e.g., in optical dipole traps or
small lattice arrays. Our calculations indicate the possibil-
ity of high fidelity generation of entangled states and
quantum superpositions states with tens of atoms, and we
propose to apply control theory methods to optimize pulse
shapes and reach even larger systems.
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Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Phys. Rev.
Lett. 93, 063001 (2004).

[5] K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa,
and M. Weidemüller, Phys. Rev. Lett. 93, 163001 (2004).

[6] R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher,
R. Low, L. Santos, and T. Pfau, Phys. Rev. Lett. 99,
163601 (2007).

[7] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod.
Phys. 70, 1003 (1998).

[8] U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann,
J. Chem. Phys. 92, 5363 (1990).

[9] D. Møller, J. L. Sørensen, J. B. Thomsen, and M. Drewsen,
Phys. Rev. A 76, 062321 (2007).

[10] J. Deiglmayr, M. Reetz-Lamour, T. Amthor, S.
Westermann, A. L. de Oliveira, and M. Weidemüller,
Opt. Commun. 264, 293 (2006).

[11] A. Messiah, Quantum Mechanics (North-Holland,
Amsterdam, 1961), Vol. 2.

[12] M. V. Berry, Proc. R. Soc. A 392, 45 (1984).
[13] D. Møller, L. B. Madsen, and K. Mølmer, Phys. Rev. A 75,

062302 (2007).
[14] F. W. Cummings, Phys. Rev. 140, A1051 (1965).
[15] A. Auffeves, P. Maioli, T. Meunier, S. Gleyzes, G. Nogues,

M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev.
Lett. 91, 230405 (2003).

[16] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and
D. J. Wineland, Phys. Rev. Lett. 76, 1796 (1996).

[17] D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe,
W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 77,
4281 (1996).

[18] M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355
(1993).

[19] P. Bouyer and M. A. Kasevich, Phys. Rev. A 56, R1083
(1997).

[20] B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986).
[21] D. Greenberger, M. Horne, and A. Zeilinger, Bell’s

Theorem, Quantum Theory, and Conceptions of the
Universe (Kluwer Academic, Dordrecht, The
Netherlands, 1989), pp. 73–76.

PRL 100, 170504 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
2 MAY 2008

170504-4


