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We provide a quantum benchmark for teleportation and storage of single-mode squeezed states with
zero displacement and a completely unknown degree of squeezing along a given direction. For pure
squeezed input states, a fidelity higher than 81.5% has to be attained in order to outperform any classical
strategy based on an estimation of the unknown squeezing and repreparation of squeezed states. For
squeezed thermal input states, we derive an upper and a lower bound on the classical average fidelity
which tighten for moderate degree of mixedness. These results enable a critical discussion of recent
experiments with squeezed light.
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Quantum teleportation [1] and quantum state storage [2]
are among the pillars of quantum information science, not
only as ground-breaking demonstrations of the usefulness
of quantum correlations against limited classical scenarios
but also as essential ingredients for quantum computation
[3] and long-distance quantum communication [4]. Con-
tinuous variable (CV) systems [5], where quantum corre-
lations arise between canonically conjugate observables
(such as the quadratures of light or the collective spin
components of atomic ensembles), are especially suited
for the unconditional implementation of these protocols
[6]. While the seminal CV experiments dealt only with
light fields [7], progress towards the establishment of a
complete quantum interface between light and matter has
been recently undertaken, with milestones such as the
storage of coherent light onto atomic memories [8] and
the teleportation from light to matter [9].

Quantum entanglement is the key resource that allows a
sender (Alice) and a receiver (Bob) to beat any classical
strategy for transmitting and storing quantum states. In
realistic implementations, however, the quality of transfer
or storage is limited by factors such as imperfections and
losses. To decide whether an experiment demonstrates a
genuinely quantum feature, one needs appropriate figures
of merit and appropriate benchmarks in terms of them. The
typical figure of merit for quantum transfer is the fidelity

[10] F � fTr��
�������
%in

p
%out

�������
%in

p
�1=2�g2 between the unknown

input state %in to be teleported by Alice and the output state
%out which is actually obtained by Bob. To conclude that a
quantum demonstration has taken place, the fidelity F has
to beat the best possible fidelity F cl —usually called the
classical fidelity threshold (CFT)—achievable by two
cheating parties who have access to unlimited ‘‘classical’’
means (local operations and classical communication) but
are not able to share entanglement nor to directly transmit
quantum systems [11]. Under this restriction, the only
possibility for Alice and Bob is a ‘‘measure-and-prepare’’
strategy, where Alice measures the input system and com-

municates the outcome to Bob, who prepares the output
according to her prescription. Devising the CFT is hence a
problem of quantum estimation [12].

In the CV setting, the CFT has been assessed only for the
special instance of pure coherent input states [11,13]. In the
limit case of completely unknown coherent amplitude, it
yields the benchmark F cl

coh � 1=2, which has been exten-
sively employed to validate experiments [7–9]. However,
no such threshold is known for the case of squeezed states,
which are currently drawing attention as input states of
transfer protocols: The high-fidelity teleportation of
squeezed states may enable cascading of teleportation,
resulting in the construction of non-Gaussian gates (e.g.,
the cubic phase gate), useful to achieve universal CV
quantum computation [6]. The lack of a CFT for squeezed
states makes the validation of experiments a rather con-
troversial issue, as there is no clear way to establish
whether the achieved performances are signatures of a
genuinely quantum information processing.

In this Letter, we provide the first quantum benchmark
for teleportation and storage of single-mode squeezed
states with zero displacement and a completely unknown
degree of squeezing r along a given direction. This encom-
passes the typical experimental situation [14] in which a
squeezed state with a known phase is generated, with the
possibility of varying the degree of squeezing by tuning the
nonlinearity of the optical parametric oscillator. For ideally
pure input squeezed states (and pure squeezed recon-
structed outputs [15]), the CFT reads F cl

sq���1� � 81:5%.
We also address the search of a quantum benchmark for
squeezed thermal states, which is necessary for a fair
comparison with the actual experiments [16]. We show
that a moderate amount of input mixedness only slightly
modifies the classical average fidelity, rendering our
benchmark robust against thermal noise. To prove this,
we provide an upper and a lower bound on the classical
average fidelity that coincide for pure input states and are
close to each other for moderately mixed input states.
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Thanks to these results, we provide a detailed discussion of
recent experiments on teleportation and storage of
squeezed (thermal) states [14,17,18], which appear on the
edge to beat the upper bound and, hence, to pass the test of
quantumness provided by our benchmark.

We consider the transmission of single-mode nondis-
placed squeezed thermal states %in

r;�, with purity � �
Tr��%in

r;��
2� and squeezing degree r, along a fixed direction

(which we can assume to be the position axis without loss
of generality [14]), defined by the action of the phase-free
squeezing operator Û�r� � exp�r2 �â

y2 � â2�� on a thermal
state %th

� � �1���
P
1
n�0 �njnihnj [where jni is the nth

Fock state, � � �1���=�1	��, and the mean number
of thermal photons is �nth

� � �1=�� 1�=2]: %in
r;� �

Û�r�%th
�Û�r�y. For � � 1, one recovers the pure squeezed

vacuum state j�ri � Û�r�j0i. A squeezed thermal state,
belonging to the family of Gaussian states [19], can be
completely described by its covariance matrix (CM)
�r;� � �1=��diagfexp�2r�; exp��2r�g. We aim at comput-
ing the CFT for teleporting states of the form %in

r;�, with
given � and completely unknown squeezing r. With the
expression completely unknown squeezing, we refer here
to the scenario where a verifier Victor secretly chooses a
value of the squeezing parameter and asks Alice to transfer
the corresponding state to Bob. The verifier will eventually
assign to Alice and Bob a score equal to the fidelity
between the input and output states. The CFT is the maxi-
mum score that Alice and Bob can get in this game with a
classical measure-and-prepare strategy [15]. The verifier
will always choose the less favorable state, forcing the two
parties to adopt the strategy that maximizes the minimum
score [12]. Such a strategy has to work equally well for any
possible value of r [20]. This scenario corresponds to the
limit case in which the input states are drawn according to
an ideally ‘‘flat’’ prior distribution of the unknown squeez-
ing parameter, in analogy to the typical situation consid-
ered for coherent states [11,13].

In order to devise the CFT for squeezed states, we
employ the techniques of Ref. [21], in which a method to
explicitly devise the optimal quantum measurement to
estimate a completely unknown squeezing transformation
Û�r� acting on an arbitrary pure single-mode state j i was
provided. Such an optimal measurement yields an estimate
of the squeezing degree equal to r	 � with probability
distribution popt

 ��� (independent on r and peaked around
� � 0) given by
 

popt
 ��� � jh j� ���ij

2;

j� ���i �
1�������
2�
p

Z 	1
�1

d�e�i��
��j i���������������������
h j��j i

p ;

(1)

where �� � 1=�2��
R
	1
�1 d�e

i��Û���. Note that the opti-
mal measurement depends on the state j i: If the optimal
measurement for the state j i is used to estimate the
squeezing on a different state j�i [22], one will generally
have a suboptimal estimation, with the probability distri-

bution given by

 p�; ��� � jh�j� ���ij2 (2)

still depending only on � but not necessarily peaked
around � � 0. The estimation in Eq. (1) is optimal for a
whole class of different figures of merit [23]. In particular,
the fidelity between two squeezed thermal states with
CMs �r;� and �r	�;� belongs to this class for any given
value of �. It depends only on the purity � and on the

difference � and is given by [24] F �;� � 2�2=��2 	�������������������������������������������������
�4 	 2 cosh�2���2 	 1

p
� 1�.

We discuss now the consequences of the above results
for the transfer of phase-free squeezed states. The
exact CFT for pure squeezed vacuum input states can
be obtained by setting j i � j0i in Eq. (1), which
yields the optimal probability distribution popt

0 ��� �

j
R
	1
�1

e�i��

�2��5=4 j��1=4	 i�=2�jd�j2, ��z� being the Euler

gamma function. The CFT is then given by the average
fidelity of the optimal estimation strategy and can be
evaluated by numerical integration of the expression
F cl

sq���1� �
R
d�popt

0 ���F �;��1. This leads to the bench-
mark F cl

sq���1� � 0:815 17, as anticipated. We notice that
the CFT of 81.5% is sensibly higher than the corresponding
one of 50% for coherent states [13]. This could be ex-
pected, as it is easier to estimate a single real parameter
than a complex amplitude. An experimental demonstration
of genuine quantum features is thus much more demanding
for squeezed states than for coherent states.

Unlike the case of coherent states (whose purity is
unaffected by photon losses), to have a fair comparison
with the experiments [14], it is crucial to investigate the
CFT for input squeezed states which are realistically mixed
[16]: This is a much harder estimation problem. In the
following, we derive both an upper and a lower bound on
the average CFT for input squeezed thermal states %in

�;r,
with given purity � (associated to the experimental losses)
and completely unknown degree of squeezing r. By aver-
age CFT, we mean the average over � of the fidelity
between %in

�;r and %�;r	�, the state prepared by Bob
when estimating r	 � [15], maximized over all possible
estimation strategies [25]. The two bounds individuate the
value of the average CFT �F cl

sq��� within a window that gets
as narrow as the purity of the state is higher, shrinking for
�! 1 onto the exact value of the CFT for pure states. Let
us start with the upper bound, which is easily obtained by
considering the ensemble decomposition of the thermal
state as a mixture of Fock states. For any possible mea-
surement performed on a squeezed thermal state, the
probability distribution will be pth��� � �1���
P
1
n�0 �npn���, where pn��� is the probability

distribution for the same measurement when performed
on the squeezed Fock state Û�r�jni. If we consider
the optimal estimation, with probability ~pth���, we
obtain the bound: �F cl

sq��� �
R
	1
�1 ~pth���F �;�d� �
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�1 � ��
P
1
n�0 �n�

R
	1
�1 ~pn���F �;�d�� � �1 � �� 
P

1
n�0 �n�

R
	1
�1 popt

n ���F �;�d�� � �F up
sq���, where

popt
n ��� is the probability distribution of the estimation

that is optimal for the Fock state jni, given by Eq. (1)
with j i � jni. Explicitly, popt

n ��� � j
R
	1
�1

ei��
2�

�����
I�n
p

d�j2,
where I�n �

R
	1
�1 d�e

i��hnjÛ���jni, and hnjÛ���jni �
�cosh���n�1=2

2F1��1� n�=2;�n=2; 1;�sinh2��, 2F1 de-
noting the Gauss hypergeometric function. We stress that
the upper bound is attained only for pure input states (�!
0): For � � 0, one has �F cl

sq��� <
�F up

sq��� strictly, as the
optimal measurement of Eq. (1) depends on which state
j i is squeezed, and for a thermal ensemble there is no way
to know which squeezed Fock state is measured.

On the other hand, any measurement performed by Alice
automatically provides a lower bound on the CFT. We
devise here a suitable estimation strategy working for
squeezed thermal states. Observing that the squeezing
transformation Û�r� commutes with the parity operator
P̂ �

P
n��1�njnihnj, to estimate r we can perfectly sepa-

rate the Fock states with even n from those with odd n. The
estimation strategy works as follows: (i) Perform a Lüders
measurement of the parity, thus projecting the squeezed
thermal state onto the even or odd subspace: If the
outcome is 	1, then the state will be proportional toPeven
n �nÛ�r�jnihnjjÛy�r�; otherwise, it will be propor-

tional to
Podd
n �nÛ�r�jnihnjÛy�r�; (ii) for parity 	1

(even subspace), perform the measurement that is optimal
for the vacuum j0i; otherwise, perform the one that is
optimal for the one-photon state j1i. The probability dis-
tribution obtained with this strategy is pth��� � �1���

�
Peven
n �npn;0��� 	

Podd
n �npn;1����, with pn;0 and pn;1

as in Eq. (2), and yields the bound �F cl
sq��� �R

	1
�1 pth���F �;�d� � �F lo

sq���. We notice that this bound
also converges to the actual CFT for �! 1.

The upper and lower bounds on the average CFT have
been numerically evaluated for several values of input
purity �< 1, down to � � 1=9 � 0:11, as plotted in
Fig. 1. We notice that they are very close to each other if
the input states are affected by a moderate amount of
thermal noise, resulting in an error which is smaller than
2% in the experimentally relevant region of � � 1=2. This
allows us to conclude that in this region the average CFT
slightly decreases with decreasing � compared to the
benchmark at � � 1. The two bounds become looser in
the highly mixed regime, still allowing us to locate the
average CFT between 70% and 90% for extremely ther-
malized input states (� in the vicinity of 0).

In our approach, we have so far assumed the purity � of
the input thermal state to be perfectly known (requiring an
exact knowledge of the experimental losses). However, by
averaging our bounds over�, we can readily get bounds on
the average CFT holding when the squeezed thermal states
prepared by Alice and Bob have equal purity randomly
distributed according to an arbitrary probability distribu-

tion p���. For example, for a flat distribution of input
purity in the range � � � � 1, � � 1=9, we obtain the
upper bound �F cl

sq < 81:3%. This and similar bounds for
�! 0 can be used to discuss experiments in which both r
and � are assumed to be completely unknown. The corre-
sponding average CFT provides a test that has to be passed
by truly quantum implementations, where � and r are not
independent [16].

We now apply our results to the analysis of recent
experiments involving teleportation and storage of
squeezed states, as shown in Fig. 1. Two experiments dealt
with teleportation of nondisplaced squeezed thermal states
of light with a known phase [14,17], achieving fidelities
F � �85
 5�% at � � 0:58 [14] and F � �83
 3�% at
� � 0:51 (here broadband squeezing was teleported)
[17,26], respectively. The expected values for the measured
fidelities reasonably appear to pass our test, even though
we judge that the challenge of a clear-cut demonstration of
quantum teleportation of squeezed light, which likely ap-
pears within reach, is not closed yet. Regarding quantum
memories, two recent experiments dealt with storage and
retrieval of squeezed states using electromagnetically in-
duced transparency [18,27]. In particular, in Ref. [18] the
fidelity F � �89
 1�% is reported for squeezed thermal
input states with � � 0:66, neatly surpassing our upper
bound on the average CFT.

We anyway stress that in all discussed experiments a
single squeezed thermal state was teleported or stored.
Unambiguous demonstration of a quantum transfer would

sq
up

sq
lo

FIG. 1 (color online). Plot of the average CFT for the transfer
of single-mode squeezed thermal states with purity �. Hollow
circles (squares), whose coordinates are reported in the table,
provide an upper (lower) bound on the average CFT and admit a
polynomial fit by the solid (dashed) line, with equation 4�4

25 �
11�3

20 	
3�2

4 �
11�
25 	

179
200 ( 21�4

200 �
6�3

25 	
3�2

25 	
11�
100 	

18
25 ). Solid sym-

bols correspond to the measured fidelities versus the purity of the
produced states, achieved in recent demonstrations: The dia-
mond ‘‘�’’ [� � 0:58, jrj � 5:3 dB, F � �85
 5�%], refer-
ring to Ref. [14], and the star ‘‘?’’ [� � 0:51, jrj � 9:1 dB,
F � �83
 3�%], referring to Ref. [17], correspond to telepor-
tation experiments, while the triangle ‘‘�’’ [� � 0:66, jrj �
5:4 dB, F � �89
 1�%] denotes the storage experiment of
Ref. [18].
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require instead the CFT to be overcome by average experi-
mental fidelities obtained in experiments involving several
input states with a whole (ideally, infinite) range of values
of r. In any experiment in which the input squeezing
distribution is not ideally flat, but has a realistically finite
width, surpassing the value of our benchmark is a strictly
necessary condition for demonstrating a quantum feature.
This simple observation highlights the serious difficulties
of the conventional CV teleportation protocol [28] (see
also [5–7]), originally designed for coherent states, when
employed for input squeezed states. Let us consider for
simplicity the case of pure input states, with the entangled
resource shared by Alice and Bob being a twin-beam
Gaussian state with squeezing s, given by j�tb

s iAB �P
1
n�0�tanhn�s�= cosh�s��jniAjniB. Then the output of CV

teleportation is still a Gaussian state, and the fidelity be-
tween input and output is FQ�r; s� � f2e�2s�cosh�2r� 	
cosh�2s��g�1=2. We note that, for a given resource squeez-
ing s (a measure of the shared entanglement), FQ�r; s�
decreases with the input squeezing jrj, vanishing in the
limit jrj ! 1. Differently from the measure-and-prepare
strategy presented here, which works equally well for any
value of r, the performances of the conventional quantum
protocol drop exponentially with the amount of input
squeezing. For any finite s, there is always a critical
value rc beyond which the quantum protocol becomes
less efficient than the classical strategy FQ�jrj> rc; s�<
�F cl

sq���1�, despite the presence of entanglement. Moreover,
by using twin-beam resources with s � 0:74 (6.4 dB), the
fidelity of the teleported states is smaller than the CFT for
any value of the input squeezing r. In short, the conven-
tional CV teleportation scheme [28], while working ex-
cellently for coherent states (the fidelity does not depend
on the complex amplitude, and the CFTof 50% is beaten iff
entanglement is shared), is not really suited for the quan-
tum transmission of squeezing.

The above discussion enables us to conclude that, no
matter how efficient is the setup, no experiment using
conventional teleportation can pass our test for all values
r of the squeezing. In view of this, the present benchmark
serves as a ‘‘minimal test’’ that has to be passed in the finite
range of values in which the experiment is designed to
successfully work. The presented result strongly motivates
the search for new schemes that are explicitly tailored for
input squeezed states: It is very desirable to have covariant
protocols that work equally well for any input squeezing
and, among those, to determine the optimal quantum strat-
egy that is able to beat the classical threshold as soon as
entanglement is shared by Alice and Bob.
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