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4 Place Jussieu, 75255 Paris Cedex
(Received 9 November 2007; published 23 April 2008)

The time needed for a particle to exit a confining domain through a small window, called the narrow-
escape time (NET), is a limiting factor of various processes, such as some biochemical reactions in cells.
Obtaining an estimate of the mean NET for a given geometric environment is therefore a requisite step to
quantify the reaction rate constant of such processes, which has raised a growing interest in the past few
years. In this Letter, we determine explicitly the scaling dependence of the mean NET on both the volume
of the confining domain and the starting point to aperture distance. We show that this analytical approach
is applicable to a very wide range of stochastic processes, including anomalous diffusion or diffusion in
the presence of an external force field, which cover situations of biological relevance.
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The first-passage time (FPT), namely, the time it takes a
random walker to reach a given target site, is known to be a
key quantity to quantify the dynamics of various processes
of practical interest [1]. Indeed, chemical [2] and bio-
chemical reactions [3], foraging strategies of animals
[4,5], and the spread of sexually transmitted diseases in a
human social network or of viruses through the world wide
web [6] are often controlled by first encounter events.

Among first-passage processes, the case where the target
is a small window on the boundary of a confining domain,
defined as the narrow-escape problem, has proved very
recently to be of particular importance [7,8]. The narrow-
escape time (NET) gives the time needed for a random
walker trapped in a confining domain with a single narrow
opening to exit the domain for the first time (see Fig. 1).
The relevance of the NET is striking in cellular biology,
since it gives, for instance, the time needed for a reactive
particle released from a specific organelle to activate a
given protein on the cell membrane. Further examples
are given by biochemical reactions in cellular microdo-
mains, like dentritic spines, synapses, or microvesicles to
name a few [7,8]. These submicrometer domains often
contain a small amount of particles that must first exit
the domain in order to fulfill their biological function. In
these examples, the NET is therefore a limiting quantity
whose quantization is a first step in the modeling of the
process.

An important theoretical advance has been made by
different groups [7–13], which obtained the leading term
of the mean NET in the limit of small aperture in the case
of a Brownian particle. However, except for spherically
symmetric geometries, these different approaches provide
an explicit dependence of the mean NET on the starting
point only in a thin boundary layer. Obtaining such infor-
mation is not only an important theoretical issue, but also a
biologically relevant question. As a matter of fact, biomo-
lecules like membrane signaling proteins or transcription

factor proteins are generated at specific sites in the cell,
whose localization plays an important role in the very
function of the biomolecules, as underlined recently in
[14]. In addition, the above-mentioned techniques to esti-
mate mean NETs have been limited so far to normal
Brownian diffusion, whereas many experimental studies
have shown that cellular transport often departs from ther-
mal diffusion due to the complexity of the cellular environ-
ment. In particular, crowding effects have proved to induce
subdiffusive behavior in many situations [15,16], while the
interaction of a tracer particle with molecular motors in-
duces a biased motion.

In this Letter we propose an alternative theory that
permits one to get new insights in the narrow-escape
problem, as follows: (i) it provides explicitly the scaling
dependence of the mean NET on both the volume of the
confining domain and the source-aperture distance in the
large volume limit, (ii) it applies to a wide range of
transport processes, including anomalous diffusion, (iii) it
encompasses the case of transport in the presence of a force
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FIG. 1 (color online). The narrow-escape problem: the particle
starts from rS and evolves in a domain � with reflecting walls,
except a small aperture Sa of typical radius a centered at rT .
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field. Our formalism partially relies on the method recently
proposed in [17], and considerably broadens its scope.

We start by extending the theory developed in [17] to
compute the mean FPT of a continuous random motion to a
closed surface Sa�rT� of typical radius a containing rT ,
starting from a source point rS. We will next give explicit
results when Sa�rT� is a sphere and show that this approach
allows one to tackle the narrow-escape problem. The vol-
ume delimited by Sa�rT� will be denoted by Ba�rT�. We
consider that the random walker evolves in a bounded
domain � of volume V of the d-dimensional space Rd.
Let P�r; tjr0� be the propagator, i.e., the density probability
to be at r at time t, starting from r0 at time 0, which satisfies
the backward equation [18]:

 

@
@t
P�r; tjr0� � �r0P�r; tjr0�; (1)

where �r denotes the Laplace operator and the diffusion
coefficient has been set to 1. Let F�r0; tjr�dS�r0� be the
probability that the first-passage time at the infinitesimal
surface dS�r0� located at r0, starting from r, is t. By
partitioning over the first arrival time t0 at a surface element
dS�r0� of the sphere Sa�rT�, one obtains a renewal equation
[18]
 

P�rT; tjrS� �
Z

r2Sa�rT �
dS�r�

Z t

0
P�rT; t� t0jr�F�r; t0jrS�dt0:

(2)

We next assume a� V1=d, so that P�rT; tjr 2 Sa�rT�� �
P�rT; tjSa�rT�� does not depend on r 2 Sa�rT�. This con-
dition will be fulfilled in the large V limit considered in the
following. We denote by hTi�Sa�rT�jrS� the mean FPT at
Sa�rT�, and write limt!1P�rT; tjrS� � Pstat�rT�. A first
order expansion of the Laplace transform of Eq. (2) in
the Laplace variable then yields

 hTi�Sa�rT�jrS�Pstat�rT� � H�rT jSa�rT���H�rTjrS�; (3)

where H�rjr0� �
R
1
0 �P�r; tjr

0� � Pstat�r��dt. Equation (3)
is an extension of a similar form given in [17,19]. We
then consider the large volume limit of Eq. (3), with
the prescription that all points of the domain
boundary tend to infinity, and define �a�rT jrS� �
limV!1hTi�Sa�rT�jrS�Pstat�rT�. As can be checked directly
from the definition of H, �a�rT jrS� satisfies the following
boundary value problem in the infinite space:
 

�r�a�rTjr� � 0 for r 2 Rd n Ba�rT�

�a�rTjr� � 0 for r 2 Sa�rT�Z
r2Sa�rT �

@n�a�rT jr�dS�r� � 1:

(4)

Note that here we look only for the physical solutions such
that �a�rT jrS� depends only on the radial coordinate r �
jrT � rSj for r	 a. Equation (4) constitutes the central
result of our method as it gives exactly the large volume
asymptotics of the mean FPT. As we proceed to show on

specific examples (see Fig. 2), this formalism provides a
very good approximate of the mean FPT for finite volumes
of various convex shapes for any value of the source target
distance. We stress that the large volume asymptotics
differs from the small a limit, which was studied in [7–
13], as there are three characteristic lengths in the problem:
a, V1=d, r � jrT � rSj. In particular, the r	 a regime is
directly accessible with our approach.

It is noteworthy that, rephrased as above, the problem
simply amounts to determining an electrostatic potential
outside a conducting surface Sa�rT� of charge unity, and
can therefore be tackled with standard techniques. For
example, when Sa�rT� is a sphere, the solution is straight-
forward and yields for the mean FPT:

 lim
V!1
hTi=V �

(
1

2� ln�r=a� for d � 2
��d=2�
2�d=2 �

1
ad�2 �

1
rd�2� for d 
 3

: (5)

This result is compatible with the form found in [20] using
a different method.

Besides the very useful analogy with potential theory,
we will show in the following that the advantage of the
formulation (4) is threefold. (i) First, it can be adapted to
other geometries and, in particular, to various examples of
extended targets, such as an escape window in the domain
boundary. It therefore extends the main result of [17]
obtained in discrete space for a pointlike target.
(ii) Second, as the derivation of Eq. (4) is independent of
the operator �, it can be reproduced for any displacement
operator L. In the general case, Eq. (4) still holds, but with
� to be substituted by the adjoint operator L�, and @n�a to
be substituted by the flux of �a. (iii) Last, and following
the previous remark, the formulation (4) can be extended to
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FIG. 2 (color online). The mean narrow-escape time (rescaled
by the domain volume) for a diffusing particle on a critical bond
percolation cluster embedded in 3d parallelepipedic domains of
different shapes: the particle starts from a chemical distance r of
a square aperture of size 1. The inset gives the same quantity for
standard diffusion. Simulations (symbols) are plotted against the
theoretical r and V scaling, with dw � df ’ 1 for the critical
percolation cluster [23].
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the case of a random walker experiencing an external force
field.

We first show that Eq. (4) can be extended to the
example of an escape window Wa�rT� of small typical
radius a centered at rT 2 @�, which is precisely the
narrow-escape problem. It will be useful to writeWa�rT� �
@� \ B�a�rT� where B�a�rT� is a small volume of typical
thickness �. We then set S�a�rT� � � \ @B�a�rT�. We now
derive the mean NET through S�a�rT�, and we will use the
fact that lim�!0S

�
a�rT� � Wa�rT� to obtain the mean NET

through Wa�rT�. Following step by step the previous deri-
vation, we obtain

 hTi�S�a�rT�jrS�Pstat�rT� � H�rT jS�a�rT���H�rTjrS�: (6)

We now take the infinite volume limit keeping r fixed,
with the prescription that � tends to the half space Rd

�

delimited by the hyperplane containing Wa�rT�, and define
limV!1hTi�S�a�rT�jrS�Pstat�rT� � ��

a�rT jrS�. One can
show that ��

a�rT jr� then satisfies:
 

�r�
�
a�rT jr� � 0 for r 2 Rd

� n B
�
a�rT�;

��
a�rT jr� � 0 for r 2 S�a�rT�;

@n��
a�rT jr� � 0 for r 2 @Rd

�;Z
r2S�a�rT �

@n�
�
a�rT jr�dS�r� � 1:

(7)

This shows that ��
a�rT jr� is the electrostatic potential in a

half space delimited by an isolating hyperplane containing
a conducting window S�a�rT� of charge unity. Taking � to 0
gives the mean NET through Wa�rT�. In the case of a
spherical windowWa�rT�, the solution of (7) can be exactly
given. For d � 3, we obtain in oblate spheroidal coordi-
nates [21]:

 lim
V!1
hTi=V �

1

2�a
arctan� �

1

4a
�

1

2�r
� o

�
1

r

�
; (8)

where � depends on Cartesian coordinates according to
z2=�a2�2� � �x2 � y2�=�a2��2 � 1�� � 1. For d � 2, we
use elliptic coordinates and get

 lim
V!1
hTi=V �

�
�
�r!1

1

�
ln�r=a�; (9)

where � depends on Cartesian coordinates according to
x2=�a2cosh2�� � y2=�a2sinh2�� � 1. We stress that ex-
pressions (8) and (9) of the mean NET are exact for any
position of the source point rS. In particular, they are
compatible with the results of [8–13], which give the
same small a limit.

We now generalize Eq. (4) to the case of a generic
displacement operator L such that the stationary distribu-
tion is uniform Pstat � 1=V, which actually underlies many
models of transport in complex media [22]. We here as-
sume that Sa�rT� is a sphere, and following [17,23], we
further assume that the infinite space propagator P0 sat-
isfies the standard scaling:

 P0�r; tjr0� / t�df=dw�
�
jr� r0j

t1=dw

�
; (10)

where the fractal dimension df characterizes the accessible
volume Vr / rdf within a sphere of radius r, and the walk

dimension dw characterizes the distance r / t1=dw covered
by a random walker in a given time t. This formalism, in
particular, covers the case of a random walk on a random
fractal like critical percolation clusters, which gives a
representative example of subdiffusive behavior due to
crowding effects [23] and could mimic in a first approxi-
mation the cellular environment. Note that we here implic-
itly require that the trajectories and the medium have
length scale invariant properties that ensure the existence
of dw and df. Substituting the scaling (10) in the definition
of H, we obtain from (3) the large V equivalence for any r:

 lim
V!1
hTi=V �

8><>:
��adw�df � rdw�df � for dw < df
� ln�r=a� for dw � df
��rdw�df � adw�df � for dw > df

;

(11)

where the constant � does not depend on the confining
domain but only on the scaling function �. Expressions
(11) therefore explicitly elucidate the dependence of the
mean FPT on the geometrical parameters V and r. As
previously Eqs. (11) permit one to obtain the mean NET:
if we assume that the exit window S�a�rT� is a half sphere of
radius a, the mean NET will be exactly given by 2 times the
mean FPT (11). For a generic window, the r and V scaling
of Eq. (11) is unchanged for r	 a. Figure 2 illustrates the
example of a square window and shows that the predicted r
and V scaling actually holds for finite volumes of various
convex shapes.

Equation (11) highlights two regimes. When the explo-
ration is not compact (dw < df), as in the case of a
Brownian particle in the three-dimensional space (see
Fig. 2 inset), the dependence on the starting point disap-
pears for r	 a. On the other hand, in the case of compact
exploration (dw 
 df), as for two-dimensional diffusion or
subdiffusion on fractals (see Fig. 2), the mean NET di-
verges at large r and the starting point position is crucial.

Last, we consider the case of a Brownian particle in the
presence of a force field F�r� � �rr��r�. We assume that
the target is a sphere Sa�rT�, and that the force field is
spherically symmetric and centered at rT . We set the gauge
such that ��r� � 0 for r 2 Ba�rT�. Equation (4) then holds
with �r to be replaced by the adjoint operator L� govern-
ing the evolution of the propagator [18]:

 L� � F�r�rr ��r: (12)

We then solve L��a�rT jr� � 0 with the same boundary
conditions as in (4), and write the stationary distribution

 Pstat�r� �
e���r�R

� d��r0�e���r0�
: (13)
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Using Eq. (3), we finally get the large V equivalence of the
mean FPT for any r:

 hTi �
��d=2�

2�d=2

�Z
�
d��r0�e���r0�

��Z r

a
u1�de��u�

�
: (14)

As previously, the mean NET through a spherical window
is obtained as 2 times the mean FPT. One should note that
the volume dependence entirely lies in the first integral
factor of (14), which is suitable for a quantitative analysis.
On the other hand, the r dependence is fully contained in
the second integral factor and will depend on the specific
shape of �. The volume dependence of (14) agrees with
the one found in [24], where, however, the r dependence
was not given.

We now give the explicit example of a divergenceless
force. In the context of biological cells, such force can
model in a first approximation the coupling of the particle
to molecular motors that perform a directional motion
along cytoskeletal filaments [25], organized in this ex-
ample in an aster, if one assumes that the force is propor-
tional to the local concentration of filaments. This situation
also describes a Brownian particle advected in an incom-
pressible hydrodynamic flow. For d � 3 such force is given
by F�r� � ��=r2 and the equivalent potential governing
the dynamics can be taken as ��r� � ��1=r� 1=a�.
Applying (14), we get

 hTi �
V

4��
�e��1=a�1=r� � 1� (15)

for a generic domain shape. Note that the r dependence is
modified by the force field, while the V dependence at
large V is unchanged for any force intensity �. For d � 2
the force is given by F�r� � ��=r and the equivalent
potential can be taken as ��r� � � ln�r=a�. Applying
(14) in the case of a domain whose boundary is parame-
trized byR��� in polar coordinates, we get the large volume
equivalence

 hTi �
1

��2� ��

�Z 2�

0

d�
2�

R2����� �
�
2
a2��

�
�r� � a��:

(16)

As opposed to the d � 3 case, the V dependence is now
modified by the force. Interestingly, we find a transition for
� � 2. For � < 2, the mean FPT will scale like V1��=2 at
large V, while the V dependence disappears for � > 2. In
the case of a target centered in a spherical domain, the
results of [1] can be straightforwardly recovered from (14)
and are compatible with (15) and (16).

To conclude, we have proposed a general theory that
provides explicitly the scaling dependence of the mean
NET on both the volume of the confining domain and the
source-aperture distance for a wide range of transport
processes, including anomalous diffusion and transport in
the presence of a force field, which are relevant to biologi-
cal situations. In particular, we find that the dependence of

the mean NET on the source-aperture distance is crucial
when the exploration is compact, as is the case for the
subdiffusive behavior in the crowded environment that is
observed in cells. Our model also permits us to take into
account the active transport due to molecular motors.
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