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A model for coinfection in multiple strain infectious diseases is developed to incorporate coinfection
statuses, immune and infection history, and cross immunity. It is solved for the symmetric interior
equilibrium through the use of a ladder operator formalism inspired by quantum mechanical methods. We
find that coinfection can fundamentally affects transmission dynamics with important epidemiologic and
evolutionary consequences. It can significantly shift the distribution of age at infection for highly
antigenically diverse pathogens so that in small host populations, an evolutionary strategy maximizing
individual strain transmissibility might be less optimal than one which maximizes the total prevalence of
all strains in the system. Alternatively, mechanisms which inhibit coinfection and thus increase total
infection prevalence may be evolutionarily advantageous.
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One of the most theoretically challenging problems in
infectious disease epidemiology is that of interacting
strains of the same pathogen, such as influenza [1] or
dengue [2], or interacting diseases such as HIV/AIDS
and malaria [3], at both the population and intrahost levels.
The central problem in studying such systems is that of
combinatorial complexity defined as the explosive growth
in the number of state variables of the system with the
linear increase in the number of strains or pathogens [4].
This impediment has sharply limited the analytical
progress in understanding the dynamics and focused
most theoretical efforts on studying systems with at most
few strains. Other approaches studied the dynamics at the
extremes of coinfection inhibition [5,6] or superinfection
[7,8] at one side and arbitrary coinfection with no strain
competition at the other side [9]. With coinfection inhibi-
tion no host can be infected by more than one strain at the
same time while superinfection assumes a competitive
hierarchy among the different strains but in such a manner
that only one strain, the most virulent, can infect and take
over the host. Meanwhile, arbitrary coinfection assumes
that a host can be infected by more than one strain with no
competition among these strains. These extremes bracket
the more general problem, where the strains of a polymor-
phic pathogen of arbitrary diversity partially compete via
cross immunity and direct competition during coinfection.
Here we show that the more general problem is also
amenable to analysis by using an operator formalism
more commonly associated with quantum mechanics.
Our analysis also has evolutionary implications. Classic
evolutionary analysis tells us that selection acts to max-
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imize the pathogen reproductive number R,. However, our
analysis indicates that for antigenically diverse pathogens
which circulate in finite host populations, coinfection may
mean that persistence is not necessarily maximized by
maximizing Ry.

In the single strain susceptible, infected, and recovered
(SIR) model [10], the population is divided into three
compartments, giving the state variables of the system:
susceptible (S), infected (I), and recovered (R). The state
space for n cocirculating strains is complex as allowance
must be made for individuals that are recovered, infected
and immune from previous strain infections, but at the
same time still susceptible to infections by the rest of the
strains, although with varying strengths determined by the
cross-immunity profile. Our model assumes lifelong im-
munity upon infection that depends on the previous infec-
tions but is independent of the order of such infections. Let
the set H ={1,2,3,..., n} label the n strains present in
the system. The subsets of J{ can be used to label the
various population compartments in the model. These
compartments are mutually exclusive and there is no popu-
lation overlap between the state variables. Excluding the
overlap significantly complicates the model and sets it in
contrast to other treatments of overlapping compartments
[4,11,12]. Let I § represents the population that has recov-
ered from all strain infections in the set 7, but currently
infected by all strains in the set £. Here 7 C H, L C
H\JT, implying J N L = @, and I3 is the fully suscep-
tible population that has no current or prior infections by
any of the strains in JH. The symbol JH{\ £ stands for all
elements in JH with the exception of strains in L. In this
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fashion the host population has been divided into compart-
ments according to the level of coinfection £ or immune
and infection history 7. The birth and immigration term of
the fully susceptibles is introduced through a constant rate
b. The loss of population by death is introduced through a
constant rate u. Implicitly, we are assuming no infection
induced-mortality. The recovery from infection is intro-
duced through a constant rate v,. Potentially each strain has
its own recovery period v, !. Infections are acquired
through a mass action term A’ § where A’ is the force of
infection for each strain i
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and f3; is the transmissibility of strain i. Cross immunity (or
enhanced susceptibility) enters the model through a reduc-
tion (or enhancement) of the susceptibility of the popula-
tion I§ to infection by a factor 0'{7’ - This parameter
provides a measure of the distance between strain i and
the immune history represented by the set J of past
infections and coinfection statuses represented by the set
L. These assumptions lead to the following system of
coupled nonlinear differential equations expressed com-
pactly using set notation:
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Here the third term is the rate of infection by strain i (which
increments the level of coinfection), the fourth term is the
rate at which infection adds individuals to the class, the
fifth term represents recovery from infection with a strain
in L, while the last term is the rate at which recovery from
an additional infection adds infection to the class.

The equilibrium is obtained in Eq. (2) by setting / § = 0.
It is formidable to solve for the equilibrium at an arbitrary
number of strains n. A tractable problem is to study the
interior equilibrium of the uniform (symmetric) n strain
problem where all strains share the same properties, i.e.,
v; = v and B; = B for all i. Here all variables with the
same ‘‘history” are equal: I§ = I§: for any L, L/, J or
J' C H provided the number of elements in £ and L' are
equal and the number of elements in J and J' are also
equal. Consequently, it is appropriate to rearrange the
system to accommodate the ‘‘strain blindness” of the
variables with respect to which strains they represent,
e, I7 L= =1 L where the superscript / stands for the number
of elements in the subset £ (coinfection number), and the
subscript j stands for the number of elements in the subset
J (recovery number). A is now identical for all strains and
is a function of the form A = F (Ij-). The equation of
motion reduces to

1
— 8j08,0 — It + ALII7V + CLIITL =0, (3)
where AL =1Aoj;_/(1 +1Z+ (n—1— j)Ao;;) and

CI = ]Z/(l +1Z + (n —1— j)Ac;,), for the case j>0
and Ct=1/(1 + n2) for j = 0. Here, Z = (1 — e)/e and
A= A/e, where e = u/(u + v) is the fraction of the
infectious period to the lifetime of the host. o;; is the
cross-immunity parameter for a population currently in-
fected by [ strains and recovered in the past from some
other j strains.

Equation (3) suggests the use of a ladder operator for-
malism, in that the closed system of (n? + 3n + 2)/2 dis-
crete population states are coupled dynamically to their
nearest neighbors. To our knowledge this formulation is
novel in the context of theoretical epidemiology, but has
been used in statistical physics. Indeed, it was pioneered by
Doi who demonstrated the ability to rewrite classical phys-
ics systems as quantum ones [13,14].

The population variables are then determined by the
following recursion relation:

L= 3% fGLni, (4)

I=1,,1+1
with I*| = Cl'_1 - A", Geometrically, the solution for
I} is essentlally an enumeration of all the possible paths
that connect the fully susceptible population I to the
population [ j The solution is in terms of the parameters
Aé and C 5», and is independent of their functional form or
specific dynamical content allowing a much wider appli-
cability of this formalism. Since A% and C}; depend on A,
the above formalism provides expressions for /' j in terms of
A which can then be substituted in A = F(I ﬁ) to yield an
equation in terms of one variable of the form A = F(A).
This equation can be solved numerically through succes-
sive approximations [5] by noting that A
limp_,oon(A())v )lo S (0, 00)

We present a sample of results based on the above
formalism. We decompose the cross immunity o;; into
two parts o;; = n;¢; where 7; is the cross—lmmunlty
parameter against acquiring new infections as a conse-
quence of prior exposure and recovery from j different
strain infections in the past, and ¢, is the cross-immunity
parameter against acquiring new infections for a host that
is currently infected by [ strains. For the calculations in
Fig. 1, we discuss the dynamics in a multiple strain system
of an infectious disease where recovery from infection
does not lead to cross immunity against other strains but
where current infection by one or more strains can induce
cross immunity against acquiring more coinfections by
other strains. Accordingly, we are exploring the dynamics
in the continuum between systems where no more than one
strain infection can be present (coinfection inhibition)
[5,15], akin to superinfection [7,8], and systems where
the strains are noninteracting and multiple strain coinfec-
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tions can overlap within the same individual (full coinfec-
tion) [9]. Hence, o;; = 0(; = ¢;. In addition, we assume
a constant cross immunity, i.e., ¢; = 1 if I = 0 and ¢; =
¢ if [ > 0 implying that cross immunity is constant against
new coinfections after the first infection.

Figure 1 shows the total prevalence y; (fraction of the
population infected by any strain) in presence of cross
immunity and coinfection as a function of the cross-
immunity parameter ¢ for two values of Ry = BN/(u +
v) [10] of 1.5 and 4 (N is the total population size). At
small Ry = 1.5, yr increases gradually with ¢ starting
from the limit of coinfection inhibition (¢ = 0) till it
reaches a maximum at the limit of noninteracting strains
with maximal coinfection (¢ = 1). This is what one would
intuitively expect from a system straddling the continuum
between the two extremes of coinfection. Nevertheless, at
large Ry = 4, a system with moderate degree of cross
immunity can have total prevalence exceeding paradoxi-
cally both of the two extremes of coinfection. The resolu-
tion of this paradox lies in the age distribution at infection
as described below.

Consider next Fig. 2 where the dependence of y; on the
two forms of cross immunity is examined. In addition to
constant ¢b; cross immunity we assume constant 7; Cross
immunity (n; = 1if j = 0 and n; = 5 if j > 0). The rate
at which y; changes versus ¢ as opposed to i shows how
the epidemic dynamics can depend differently on the two
forms of cross immunity. The cross immunity against
coinfection can be more influential in the interstrain dy-
namics than that of prior exposure cross immunity. Weaker
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FIG. 1. The total prevalence yr as a function of the cross-
immunity parameter ¢ with n =1, e = 0.3, and n = 50. The
solid line represents the total prevalence with coinfection and no
cross immunity, the dashed line the total prevalence with co-
infection and cross immunity, and the long-dashed-short-dashed
line the total prevalence with coinfection inhibition. Note that
¢ =1 imply no cross immunity while ¢ = 0 imply total cross
immunity.

coinfection cross immunity allows the pathogen to reach
more segments of the population through coinfections of
those who are already infected by at least one strain.

In Fig. 3 we display individual strain prevalence y,
(fraction of the population infected by any one specific
strain) and the total infection prevalence y; at the two
extremes of full coinfection and coinfection inhibition as
a function of Ry. In the coinfection inhibition limit, both
¥5° and y}° = y7°/n increase monotonically as a function
of Ry to the point of saturation. However, in the full
coinfection limit y§° increases rapidly initially with R,
but then peaks before declining and asymptotically tending
to a low level. y; in the coinfection inhibition model can be
larger than that of full coinfection at large R. This result is
perhaps counter-intuitive on the basis that the presence of
coinfection yields an increased number of infections im-
plying intuitively an increased number of infected indi-
viduals. The age distribution at infection is at the heart of
this paradox. Since the average age at infection is given by
Tiiretime/ Ro [10], a large R, (and hence a greater force of
infection) implies an earlier age at infection. With coin-
fection and large R, hosts are exposed to most strains early
in life, giving high multiplicities of infection at young ages,
while with coinfection inhibition hosts have to experience
infections sequentially, leading to a broad age distribution
at infection and consequently a larger y;. As R increases,
the dynamical difference between models with and without
coinfection increases. This difference in behavior might be
critical in interpreting total prevalence data for a multiple
strain pathogen such as malaria, as one can be mistaken in
assuming a positive or simple correlation between infec-
tion prevalence and R;. Prevalence data need then to be
supplemented with data on the multiplicity of infection (or
within-host pathogen diversity) and the age-distribution of
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FIG. 2 (color online). The total prevalence in the presence of
the two forms of cross immunity and coinfection as a function of
the cross-immunity parameters ¢ and 7. For this calculation
n=>50,Ry=4and e = 0.3.
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FIG. 3. Individual versus total prevalence. The total (yr) and

individual (y;) strain prevalences, in the presence (¢ = 1) and
absence (¢ = 0) of coinfection, as a function of the reproductive
number (Rj). Here n = 50, n = 1, and e = 0.1.

infection—with attention being paid to the potential im-
pact of coinfection.

Individual strain prevalence is an important determinant
of the overall fitness of a pathogen strain in finite host
populations. But might multiple strain pathogens, perhaps
mediated by rapid genetic mixing between strains, evolve
to maximize their total prevalence as opposed to their
individual strain prevalence? Coinfection fundamentally
affects this issue, as in the absence of coinfection, there
are no differences in the qualitative behavior of the total
compared to the individual prevalences. This evolutionary
question is whether a “local” versus a ‘“‘global” fitness
measure is preferred. If a pathogen strain adopts the local
strategy of evolving to maximize its own strain prevalence,
then it should evolve to maximize R, at least until the
point at which prevalence saturates. On the other hand, if
the pathogen should adopt the global strategy of maximiz-
ing the total prevalence of infection in the system, then it
would evolve to the low optimal value of R, which max-
imizes this fitness measure. A global strategy is suggestive
of group-selection except perhaps in the case of pathogens
where genetic mixing is sufficiently intense for kin-
selection [16,17] to be a significant factor - something
which may be the case for some bacterial and helminthic
infections. In such cases, maximizing total prevalence
maximizes the persistence of the pathogen overall.
Persistence is fundamentally a stochastic phenomenon,
and thus one not readily captured by deterministic evolu-
tionary modelling. For highly diverse pathogens with many
strains at low frequencies, the concept of selection fixating
a maximally fit variant breaks down, and instead it is more
useful to consider the evolutionary dynamics of the qua-
sispecies of closely genetically related strains which are
shaped by the competing pressures of selection, recombi-
nation or mutation and extinction [18]. In such a scenario,
the fittest of the individual strains may not be even present
as part of the quasispecies [19]. Nonetheless, without a
mechanistic model that shows how selection for total as
opposed to individual strain prevalence can arise, no de-

finitive conclusions can be drawn. Situations where host
populations are small (giving high probabilities of single
strain extinction) and strains are highly genetically related
(via recombination) perhaps represent the most likely con-
text for such selection, but more work is needed to dem-
onstrate this.

Thus a goal for future work is to combine the epidemio-
logical dynamics of multiple strain infections with that of
the evolutionary dynamics of selection to assess the evolu-
tionary trends in pathogen evolution. We focused here on
the former, but still our treatment provided evolutionary
insights and implications. A natural extension of this work
is to explore evolutionary dynamics more explicitly, with
the incorporation of pathogen virulence, mutations, and
strain generation.
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