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We report a first principles formalism and its numerical implementation for treating quantum transport
properties of nanoelectronic devices with atomistic disorder. We develop a nonequilibrium vertex
correction (NVC) theory to handle the configurational average of random disorder at the density matrix
level so that disorder effects to nonlinear and nonequilibrium quantum transport can be calculated from
atomic first principles in a self-consistent and efficient manner. We implement the NVC into a Keldysh
nonequilibrium Green’s function (NEGF) -based density functional theory (DFT) and apply the NEGF-
DFT-NVC formalism to Fe/vacuum/Fe magnetic tunnel junctions with interface roughness disorder. Our
results show that disorder has dramatic effects on the nonlinear spin injection and tunnel magnetoresis-
tance ratio.
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Quantitative understanding of impurity effects is crucial
for nanoelectronics where device properties are strongly
influenced by or even built on such effects. Examples are
electron scattering by dopants in semiconductor nanowires
[1] and field effect transistors, spin scattering by disorder in
magnetic tunnel junctions [2], and transport of spin-
polarized current in dilute magnetic semiconductors [3].
Unintentional impurities sit inside a device at unpredict-
able locations, and, therefore, any physical quantity pre-
dicted by theory should be averaged over impurity
configurations. In ab initio calculations, one may carry
out this average by generating many impurity configura-
tions for a given concentration x, calculating the relevant
physical quantity for each configuration, and finally aver-
aging the results. Such a brute force calculation is often not
practical for at least two reasons. First, when x is small as is
typical in the case of semiconductor devices, say, 0.1%,
one would need a thousand host atoms to accommodate
just one impurity atom. Second, it is known that an impu-
rity average may require a huge number of configurations
[4]. These requirements make a calculation prohibitively
large. Considerable effort has therefore been devoted in the
literature to develop approximate techniques which avoid
brute force. In this regard, a widely used technique is the
coherent potential approximation (CPA) [5] as imple-
mented in the Korringa-Kohn-Rostoker [6] and linear
muffin-tin orbital (LMTO) [7] first principles methods.
So far, CPA has been applied to equilibrium electronic
structure and transport calculations [8]. However, most
nanoelectronic devices operate under nonequilibrium con-
ditions; for instance, one wishes to predict nonlinear
current-voltage (I-V) characteristics. It is thus very impor-
tant to develop appropriate nonequilibrium techniques for
impurity averaging.

Here we report our solution of the atomistic nonequilib-
rium impurity average problem for quantum transport. We
start from a state-of-the-art real space atomistic quantum

transport formalism where density functional theory (DFT)
is carried out within the Keldysh nonequilibrium Green’s
function (NEGF) framework [9,10]. The basic idea of
NEGF-DFT is that the device Hamiltonian and the elec-
tronic structure are determined by DFT, the nonequilibrium
quantum statistics of the device physics is determined by
NEGF, and the transport boundary conditions under exter-
nal bias are handled by a real space numerical technique.
We deal with an impurity average at the single particle
retarded Green’s function level by CPA [5] and at the
NEGF level by evaluating a nonequilibrium vertex correc-
tion (NVC) term. The NEGF-DFT-NVC formalism allows
us to construct a nonequilibrium density matrix self-
consistently that includes impurity averaging. We then
apply our NEGF-DFT-NVC formalism to investigate the
effects of interface roughness disorder in a magnetic tunnel
junction (MTJ). Our results indicate that the disorder effect
can drastically and qualitatively influence the nonlinear
I-V curves and tunnel magnetoresistance ratio.

We consider a two-probe device consisting of a scatter-
ing region and two semi-infinite leads extending along the
transport direction z to z � �1, as shown in Fig. 1. The
system is periodically extended along the transverse �x; y�
direction. Note that the scattering region includes several
layers of lead atoms [9]. A bias voltage Vb is applied across

FIG. 1 (color online). Schematic of atomic structure of the
Fe=Vac=Fe magnetic tunnel junction. The two Fe=Vac interfa-
ces have roughness disorder. Fe: yellow spheres; vacuum: white
spheres.
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the leads to drive a current flow, i.e., �l ��r � eVb,
where �l;r are electrochemical potentials of the left or
right leads. We assume that impurities exist inside the
scattering region randomly but not in the leads. We further
assume that any atomic position R in the scattering region
may be occupied by two atomic species, the host and
impurity atoms labeled by Q � A;B with concentrations
CAR and CBR such that CAR � C

B
R � 1.

In a NEGF-DFT self-consistent analysis [9] of ordered
systems, the nonequilibrium density matrix is calculated
by NEGF G<�E�, i.e., n̂�E� �G<�E�; here, G< satisfies
the Keldysh equation G< � GR�<GA, where GR �

�GA�y is the retarded Green’s function. �< � i�lfl�
i�rfr is the lesser self-energy, where fl;r are Fermi func-
tions of the left or right leads; �l;r are linewidth functions
describing coupling of the scattering region to the leads,
and they can be calculated by standard iterative methods
[9]. Translational invariance of the ordered system allows
one to evaluate all quantities in the unit cell by integration
over the two-dimensional Brillouin zone (BZ) in the �x; y�
direction. When there are impurities, translational symme-
try is broken. The spirit of CPA is to construct an effective
medium theory by an impurity configurational average that
restores the translational invariance. For NEGF, this means

calculating �G< � GR�<GA. Even though there is no
impurity in the leads to affect �<, the impurity average
�� � �� correlates Green’s functions GR with GA. In par-
ticular, �G< � �GR�< �GA due to multiple scattering by the
impurities. To calculate �G<, we introduce a quantity �NVC

that is a consequence of impurity scattering at nonequilib-
rium, such that �G< � �GR��< ��NVC� �GA. �NVC is
called a NVC whose equilibrium counterpart is well known
in calculations of the Kubo formula by Feynman diagram-
matic techniques [11]. There is, however, a major qualita-
tive difference here: �NVC depends on the nonequilibrium
quantum statistical information of the device scattering
region, while the equilibrium VC does not.

We found that �NVC is most conveniently calculable by
using a site-oriented calculation scheme; for this reason,
we develop our NEGF-NVC theory within the tight-
binding (TB) LMTO DFT implementation [12,13], by
using CPA [7,8] to describe the averaged system. In this
approach, the impurity average for any single-site physical
quantity XR is given by

 

�X R �
X

Q�A;B

CQR �XQR ; (1)

where �XQR is the conditional average over a particular
atomic species Q at site R which is calculated by

 

�X Q
R � �QRXR=C

Q
R : (2)

Here �QR is the occupation of site R by atomic species Q,
and its average is ��QR � CQR . Equation (1) means that the

average of a quantity at site R is a linear combination of
contributions from each atomic species.

The technical derivation details are given in the supple-
mental material associated with this Letter [14]; here, we
briefly outline the spirit of the theory. The impurity average
of the site diagonal NEGF is carried out by application of
Eq. (1), i.e., �G<

RR �
P
Q�A;BC

Q
R

�G<;Q
RR . The atom-resolved

NEGF �G<;Q
RR gives the atom-resolved average local charge

density �nQR � �G<;Q
RR , which is needed in the DFT self-

consistent iterations [9]. To find �G<;Q
RR , we use Eq. (2).

The final expressions of �G<;Q
RR are given in Eqs. (10),

(28), and (29) of the supplemental material [14], and they
are related to �NVC of the auxiliary NEGF. The calculation
of NVC is carried out by application of single-site approxi-
mation within CPA-based multiple scattering theory as
summarized in the supplemental material [14], where the
final expression is given by Eq. (23). From �NVC, we
obtain �G<;Q

RR and hence the averaged density matrix �nQR
for atom Q on site R. The charge density is used to
calculate the device Hamiltonian for the next step in the
DFT iteration, and this procedure is repeated until numeri-
cal convergence.

An extremely stringent test of our NEGF-DFT-NVC
formalism and its numerical implementation is carried
out by calculating two-probe devices at equilibrium and
checking if the fluctuation-dissipation relationship is sat-
isfied or not. Mathematically, the fluctuation-dissipation
theorem dictates that �G<;Q

RR �
�GA;Q
RR � �GR;Q

RR at equilib-
rium. Here the calculation of �G<;Q

RR requires NVC, while
calculations of �GA;Q

RR and �GR;Q
RR do not. For many disor-

dered device structures, including that in Fig. 1, that we
have checked, the fluctuation-dissipation relationship is
always satisfied to at least one part in a million, and the
final tiny difference can be attributed to numerical calcu-
lation issues. We found that NVC is extremely important:
Without it, the density matrix and transmission coefficients
can have large errors and even become qualitatively
incorrect.

After the NEGF-DFT-NVC self-consistent calculation is
converged, we calculate current-voltage (I-V) character-
istics by the Landauer formula. At a low temperature, the
I-V curve is generally given by:

 

�I �
e
h

Z �l

�r

Tr	�lG
R�rG

A
dE: (3)

The integrand of the above expression is the transmission
coefficient where the impurity average, once again, corre-
lates the retardedGR and advancedGA Green’s functions.
Evaluation of this correlation also involves a vertex cor-
rection, in this case with respect to one of the �l;r, and is
unavoidable even for the equilibrium situations [8,15]. The
averaged transmission coefficient �T�E� is calculated by
Eq. (31) in the supplemental material [14].

PRL 100, 166805 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
25 APRIL 2008

166805-2



As an important application of the NEGF-DFT-NVC
formalism, we have investigated a disordered MTJ shown
in Fig. 1, which consists of a vacuum (Vac) tunnel barrier
sandwiched by two Fe leads. The Fe=Vac interface has
roughness disorder, which substantially influences spin-
dependent transport at equilibrium [16]. Here we focus
on nonequilibrium. In our Fe=Vac=Fe MTJ, the interface
roughness is present in one atomic layer on both left or
right Fe=Vac interfaces with x and 1� x Fe atoms, re-
spectively, and vacuum on the rest of the sites. The scat-
tering region consists of ten perfect atomic layers of Fe
oriented along (100) on the left and right ending with the
rough interface sandwiching four vacuum layers. The scat-
tering region is connected to perfect Fe left or right leads
extending to z � �1. Because the entire structure, after
impurity average, is periodic along the transverse x and y
directions, we found that very careful two-dimensional BZ
sampling is necessary in calculating the density matrix: We
use 200� 200 k mesh to ensure excellent numerical con-
vergence. For the I-V curve calculation [Eq. (3)], 300�
300 BZ k mesh is used for each point in the energy
integration. For other DFT details, we follow standard
TB-LMTO literature [16].

Figure 2(a) is a semilog plot of equilibrium (Vb � 0)
conductance versus disorder x for both spin-up and -down
channels G" and G#, respectively. The four curves corre-
spond to magnetic moments of the two Fe leads having
parallel or antiparallel configurations (PC or APC). Since
the left interface is chosen to be FexVac1�x while the right
is Fe1�xVacx, G";# are both symmetric about x � 0:5 in PC
(black squares and red circles, respectively). For APC, they
are not symmetric but satisfy G"�x� � G#�1� x�, as ex-
pected. Impurity scattering changes all spin-dependent
conductances; the most dramatic change is seen in G# in
PC [red circles in Fig. 2(a)]. It was well known [17] that,
for perfect interfaces, the surface electronic states of Fe
give resonance transmission. These resonances are de-
stroyed rapidly by the interface disorder as x changes
from zero to 50% leading to the drastic reduction of G#
in PC. An important device merit for MTJ is the tunnel

magnetoresistance ratio (TMR) defined by total tunneling
currents for PC and APC: TMR � �IPC � IAPC�=IAPC. At
equilibrium when all currents vanish, we use equilibrium
conductances to calculate the TMR. Figure 2(b) plots the
equilibrium TMR versus x showing a dramatic effect of
disorder. In particular, the TMR drops to very small values,
even to slightly negative values, as x is increased from
zero. These equilibrium features are consistent with pre-
vious supercell calculations [16].

We now investigate nonequilibrium properties when
Vb � 0 so that current flows through. To show the impor-
tance of NVC, we have calculated I-V curves at x � 0:05
by including the vertex correction only at the level of
transmission coefficient, i.e., without NVC in the NEGF-
DFT self-consistent iterations of the density matrix: The
solid (green) lines in Fig. 3(a) plot this result. In compari-
son, the dashed (red) lines plot the full results where NVC
is included. The substantial differences indicate that NVC
is extremely important for obtaining correct results at
nonequilibrium. Furthermore, if the vertex correction is
neglected at the transmission calculation level, i.e., ne-
glecting the second term of Eq. (31) of the supplemental
material [14], the full NVC results (dashed lines) change to
open circles and open squares in Fig. 3(a), again showing
the importance of vertex correction. Figure 3(b) and its
inset plot the TMR versus bias for four values of x � 0:0,
0.05, 0.3, and 0.5, obtained by the full NVC formalism. For
zero or small values of x, the TMR reduces with Vb as is
often seen in experimental measurements [18]. For larger
x, for instance, x� 0:5, the TMR can go negative as Vb is
increased. Indeed, experimental measurements had seen
[19] a negative TMR at large Vb, although for different
MTJs and possibly a different physical origin. Very dra-
matically, at x � 0:3, the entire TMR curve is negative:

FIG. 2 (color online). (a) Conductance G";# versus disorder x at
equilibrium. Red circles: G# in PC; black squares: G" in PC. Blue
down-triangles: G# in APC; green up-triangles: G" in APC.
(b) The TMR versus x.

FIG. 3 (color online). (a) Comparison of I-V curves with
disorder x � 0:05. Solid lines (green): Current for PC (down-
triangles) and APC (up-triangles) without using NVC in a
density matrix self-consistent iteration. Dashed (red)
lines: Current for PC (solid circles) and APC (solid squares)
using the full NVC theory. Open circles (PC) and open squares
(APC) are full NVC data but neglecting vertex correction in the
transmission calculation. (b) The TMR versus bias voltage Vb
for four different values of x. The main figure is for x � 0:0
(black squares) and x � 0:05 (red circles); the inset is for x �
0:3 (black down-triangles) and x � 0:5 (red up-triangles).

PRL 100, 166805 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
25 APRIL 2008

166805-3



Here the absolute value of the TMR actually increases with
Vb (see inset). These behaviors of the TMR strongly sug-
gest that interface disorder plays very important roles for
nonequilibrium spin injection.

Figure 4 plots spin-polarized currents and the TMR
versus disorder x at Vb � 0:544 V. This is to be compared
with Fig. 2, where Vb � 0. A finite bias breaks the left-
right symmetry of the atomic structure, and, therefore, the
spin-polarized currents do not have a symmetric behavior
about x � 0:5 anymore. Both spin-polarized currents
[Fig. 4(a)] and the TMR [Fig. 4(b)] vary with disorder x
in substantial ways. In particular, the TMR rapidly dips to
negative values when x is increased to about 20%. So far,
we have focused on devices where the left has a FexVac1�x
interface while the right has Fe1�xVacx. We have also
applied the NEGF-DFT-NVC formalism to devices where
the left and right interfaces are disordered totally differ-
ently. The inset in Fig. 4(b) plots the TMR for such a
system where the left interface has x � 0:3 while the right
interface has x � 0:05. For this system, the TMR is nega-
tive, and its absolute value decreases as Vb is increased,
which is qualitatively similar to what was discussed above.

In summary, we have developed a nonequilibrium vertex
correction theory and its associated software for analyzing
quantum transport properties of disordered nanoelectronic
devices at nonequilibrium. The impurity averaging of the
nonequilibrium density matrix is facilitated by the NVC
that is related to quantum statistical information of the
device scattering region. Our NEGF-DFT-NVC theory
has several desired features, including atomistic first prin-
ciples, nonequilibrium, an efficient configurational aver-
age, and self-consistency. This allows us to analyze
nonequilibrium quantum transport of realistic device struc-
tures including realistic atomic substitutional impurities.
By using this tool, we have calculated nonlinear spin-
polarized currents in Fe=Vac=Fe MTJ with interface
roughness disorder and found that the effects of NVC

can play a dominant role in determining the properties of
spin injection.
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FIG. 4 (color online). (a) Spin-polarized currents versus dis-
order x at bias Vb � 0:544 V for PC and APC. Red circles and
black squares: Spin-polarized currents for spin-up and -down in
PC; green up-triangles and blue down-triangles: spin-polarized
currents for spin-up and -down in APC. (b) The TMR versus x at
the same Vb. Inset in (b): The TMR versus Vb for a device where
the left and right interfaces have different values of x—on the
left interface, x � 0:3; on the right, x � 0:05.
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