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Suppression of Magnetotransport in Strongly Disordered Graphene
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A tight-binding model with randomly fluctuating atomic positions is studied to discuss the effect of
strong disorder in graphene. We employ a strong-disorder expansion for the transport quantities and find a
diffusive behavior, where the conductivity is decreasing with increasing disorder. For sufficiently strong
disorder the magnetic field drops out of the diffusion coefficient and the conductivity. This signals a strong
suppression of magnetotransport effects, a result which is consistent with recent experimental observa-

tions by Morozov et al.
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Introduction.—Experimental studies on graphene re-
vealed remarkable transport properties of this material
[1-3]. There is a robust minimal conductivity in the ab-
sence of an external magnetic field and a quantum Hall
effect in the presence of a strong magnetic field [1,2].
Morozov et al. found that also for weak magnetic fields
unusual transport properties exist: The peak of the magne-
toresistance at zero field, the hallmark of weak localization
in two-dimensional systems [4], is strongly suppressed in
graphene [3,5,6]. This suppression was attributed to disor-
der caused by ripples in the graphene sheet. When these
ripples are removed, the quasiparticle mobility is signifi-
cantly increased and a normal magnetoresistance peak
appears [5]. The peak was also observed in multilayers
of graphene, where ripples are less developed because of
the higher rigidity of the material.

In this Letter we study the transport properties of gra-
phene in terms of a tight-binding model for quasiparticles
on a honeycomb lattice in the presence of a homogeneous
magnetic field. Strong disorder is introduced by randomly
fluctuating hopping rates. The study is restricted to a
system without a gate (i.e., the system is at the Dirac point),
where the model has a chiral symmetry.

The usual approximation by Dirac fermions is not ap-
plicable to strong randomness. Nevertheless, we find a
qualitative agreement of the transport behavior between
the tight-binding model and Dirac fermions with random
vector potential [7] or random mass [8]. This indicates that
the sublattice structure, and not the chiral symmetry, is
responsible for the suppression of magnetoresistance peak.

Tight-binding model on a honeycomb lattice.—Hopping
of quasiparticles on a honeycomb lattice is defined by the
Hamiltonian

H =~ hgreher +He, (1)

RR'

with quasiparticle creation (annihilation) operators c;re (cp)-
The hopping rate hg ' between lattice sites R and R’ may
fluctuate from bond to bond around the average value ¢ due
to ripples in the graphene sheet.

0031-9007/08/100(16)/166801(4)

166801-1
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A nonorthogonal basis {a,, a,} (cf. Fig. 1) is used to
express the hopping rates in terms of the sublattice repre-
sentation by writing R = r (= r + b;) if Ron A (B). Now
r can be expressed in the basis {a;, a,}, and hp g in Eq. (1)
is replaced by the matrix

e ( 0 d+ A), dpp =13 8,

=123
(2

ca=ayta. A=

dl + AT 0

for ¢, =0, ¢, =a, and
> =123 0 -, are random fluctuations of the hopping
term with (¢’ ,‘r> = (0. We set r = 1 and keep in mind that ¢
and all other energies of the model are measured now in
units of the hopping rate .

Although curvature can have significant effects [9-11],
it will be ignored here by assuming that the lattice is flat on
length scales that are relevant for transport properties.
Therefore, only fluctuations of the hopping rates between
neighboring sites on the honeycomb lattice are considered.

The quasiparticle Hamiltonian H consists of a
translational-invariant part H, = (H) and a term that de-
scribes the random fluctuations. For the latter we assume
that on large scales it can be approximated by on-site
terms, provided there is only short-range disorder. Such a
choice leads to a random vector potential, previously pro-
posed for ripples in graphene by Morozov et al. [5] and
derived for changes in the hopping due to hybridization
between different orbitals in curved graphene sheets and
due to elastic strain [9]:

FIG. 1. Lattice vectors on the honeycomb lattice. The lattice is
divided into sublattice A and B, where nearest neighbors of A
belong to sublattice B.
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H:H0+U10'1+U20'2, (3)

with Pauli matrices o;. We introduce an uncorrelated
Gaussian distribution for v with mean zero and variance
g and write v; = vcosa, v, = vsinae with a tunable
parameter «. Similar models, based on Dirac fermions
with a random vector potential, have been studied in the
literature [7,12,13]. The seminal work by Ludwig et al.
states that a random vector potential does not renormalize
the variance g, and that (using a bosonization approach in
replica space) the conductivity is not affected by this type
of disorder [7]. The density of states, on the other hand, has
a power law near the Dirac point with exponent
(7 — g)/(ar + g). This indicates that for strong disorder
(g > m) the density of states diverges at the Dirac point,
whereas it vanishes for weak disorder (g < 7). The physi-
cal implications of this behavior can be discussed in terms
of the Einstein relation, where the conductivity o is given
as the product of the density of states p and diffusion
coefficient D as o « pD. Then the nonzero conductivity
at the Dirac point (minimal conductivity) would imply an
infinite D for g < 7r and D = 0 for g > . In other words,
these findings describe a transition at g = 7 from ballistic
transport directly to localization, without an intermediate
diffusive regime.

For small g the exponent of the density of states can also
be evaluated in perturbation theory as 1 — g/7r. However,
in a recent work on the density of states a disorder created
energy scale exp(—/g)/g was detected, below which
perturbation theory breaks down [14]. In other words, the
assumption of a power law is invalid at the Dirac point and
in its vicinity. The energy scale is similar to the Kondo
scale of the Kondo effect [15] and was also found inde-
pendently for the conductivity by Auslender and
Katsnelson [16]. It implies a nonzero density of states at
the Dirac point. A similar result was found for topological
disorder [10]. In the following, it shall be discussed that the
nonzero density of states is associated with spontaneous
breaking of a symmetry which leads to diffusion of
quasiparticles.

Magnetic field. —A magnetic field B perpendicular to
the graphene plane enters the Hamiltonian through a
Peierls phase; i.e., the hopping terms in H,, are replaced by

. r+b;
drr’(B) — Zel‘br,/ﬁrr,r_cj, ¢r,j - f ) Adb], (4)
J

r

where A is the vector potential of the magnetic field B. A
homogeneous magnetic field creates additional terms to H
that are periodic in one spatial direction and proportional to
o and o,, respectively.

Symmetries.—H is invariant under the transformation
H — e!*73He!¢73, This is related to the chiral symmetry
discussed, for instance, in Refs. [17,18]. Here we are not so
much interested in the symmetry of the Hamiltonian but in
that of the two-particle Green function (2PGF) at the Dirac

point
K(r, ¥'; €) = (Tr,[G(r, r';i€)G(¥, r; —i€)]). 5)

Tr, is the trace with respect to the spinor structure, G(ie) =
(H + ie)~ ! is the one-particle Green function, and (- - -) is
the average with respect to the random term of the
Hamiltonian. The second Green function in Eq. (5) can
be replaced by —a3G(¥, r;i€)os, because it obeys the
relation G(—ie) = — o G(i€)o,;. Within a linear-response
approach, K(r, r'; €) gives the transport properties: The dc
conductivity at zero temperature is [7,19-23]

o < €Y 17K (r, 0; €)l c=- (6)

For localized states the 2PGF decays exponentially on the
localization length for which this expression gives a van-
ishing dc conductivity.

To analyze the 2PGF in detail, we follow Ref. [24] and
write it, before averaging, as a Gaussian functional integral
with two independent Gaussian fields, a boson (complex)
field y,. and a fermion (Grassmann) field ¥, (k = 1, 2):

Gy (r, 13 i€)Gnlr, 73 i€) = ] Xy o UV
X exp(—Sy) DV Dy. (7

Sy is a quadratic form of the four-component field ¢, =
(Xrl’ Xrls ‘PrQ’ ‘PrQ):

SO = _lz¢r ' (H + ie)r,r/(ir’(e > 0) (8)

The use of the mixed field ¢, avoids an extra normalization
factor for the integral. (The replica trick, used in Ref. [10],
is an alternative to avoid this extra normalization factor.)
The extended Hamiltonian H = diag (H, H) of S acts in
the boson and in the fermion sector separately. It is invari-
ant under the transformation

H—-UHU=H with U= exp(l/—/(())_3 ‘/’(‘)’3> 9)
for Grassmann variables # and i, whereas i€ in Eq. (8)
causes a symmetry breaking. This symmetry is central for
the transport properties, because it determines the large-
scale properties of the 2PGF by creating a massless mode.
The latter is a consequence of a possible spontaneous
symmetry breaking at the Dirac point € — 0 [8]. This
indicates that transport at the Dirac point is qualitatively
different from transport away from the Dirac point, where
this symmetry is explicitly broken by the Fermi energy. An
important question in this context is how the symmetry
affects average quantities, and whether spontaneous sym-
metry breaking occurs. The signature of the latter is a
nonzero density of states at the Dirac point [25]. (The
method of Ref. [25] can be applied to the present model
to prove that the average density of states is nonzero.)
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Averaging the 2PGF over the Gaussian distribution of v,
means replacing exp(—S;) by {(exp(—S;)) on the right-
hand side of Eq. (7). The average quantity can be written
again as an exponential function (exp(—S,)) = exp(—S,),
where the new function S; contains also quartic terms of
the field ¢, a consequence of the Gaussian distribution.
Then it is convenient to transform the integration variables

as

XrXr Xr\i_,r —Q, = 0, 0,

\Pr/?r \Pr\Pr ' ®r —iP, '
where Q,, P, are symmetric 2 X 2 matrices, and ©,, 0,
are 2 X 2 matrices whose elements are independent

Grassmann variables. The average 2PGF now reads as a
correlation function in the new field Q,:

(10)

1
K(r,r'ie)= —— fTr2(®,/[0'1 cosa + o, sina])
8

X Try(0,[ o) cosa + o, sina])

X exp(—$,)D[Q], (1D

with

S, = Zé Trg(Q?) — In[detg[H, + ie —2yQ]]. (12)

rr

Trg is the graded trace, detg the graded determinant [24],
and vy is a 4 X 4 matrix, consisting of the linear combina-
tion y; cosa + 7y, sina, where y; = diag(o;, o;). The in-
tegration over Q can be performed in a saddle-point (SP)
approximation, where the SP satisfies the extremal condi-
tion 6o, = 0, which reads explicitly

Q¥ = 2¢[H, + ie — 2yQ%",y. (13)

A consequence of the symmetry (9) is that with Q5P also
UQSPUY is a solution of the SP equation at the Dirac point
e=0.

The right-hand side of Eq. (13) is translational invariant
in the absence as well as in the presence of a homogeneous
magnetic field. This is a consequence of the fact that the
diagonal Green function G,, describes closed loops of
quasiparticles. These loops depend only on the flux which
they enclose. The translational-invariant G,, has a constant
SP solution QS? = —i(n/2)y which satisfies

n = 4ig(Hy + i€ + in);. (14)

n can be interpreted as a self-energy of the average one-
particle Green function (H, + i€ + in)~' [26]. Then the
average density of states at the Dirac pointis p = n/g. A
SP solution 1 > 0 exists even in the limit € — 0, which
reflects spontaneous symmetry breaking. 7 increases with
g and reaches for large g, the asymptotic regime with n ~
2,/2, where the density of states decays like p ~ g~/2.
The invariance of the SP equation requires the integra-
tion over all SPs and their vicinities. This leads to a SP

manifold, generated by the symmetry transformation in
form of the nonlinear field
Q)= —iZUlyU, = ~i7 yU (15)
2 2
U, is the matrix U of Eq. (9) with space-dependent
Grassmann fields ¢, and ,. The integration with respect
to the chiral symmetry is not taken into account here
because the corresponding fields are perpendicular to the
Grassmann fields in leading order. Thus they do not con-
tribute to the average 2PGF.

Replacing Q, by Q. in S, provides two major simplifi-
cations: (i) The first term in expression (12) vanishes,
because Q/? is proportional to the 4 X 4 unit matrix.
(i1) The second term becomes

— Indetg(U™'(H, + ie)U™" + in), (16)

because detgU = 1. This expression can be expanded ei-
ther in powers of ! or in powers of 7. The problem of
the latter case is that at low energies, which are relevant at
the Dirac point, the expansion terms (H, + i€)~/ are arbi-
trarily large. Consequently, this expansion cannot be con-
trolled. The expansion in powers of 1~ !, on the other hand,
has always small terms for a smoothly varying U~!, pro-
vided 7 is not too small in comparison with energies of
these modes. The expansion in powers of 7! can also be
justified by using large values of 7 formally, and then
continue it down to physically reasonable values of 7.
Because no singularity appears, this extrapolation is at
least qualitatively correct. Thus the second-order term is
a good approximation for low energies. It gives for the
expression in Eq. (16)

8 _
SZ == %Z(Eérr' + Crr’)l//rl//r’ + 0(n73)r (17)
where C, is
1
2_(ZTr2[HO,7r’HO,r’?]6r,r’ - Tr2[H0,rr’H0,r’r]>’ (18)
N\F
The average 2PGF of Eq. (11) then reads

3

K(r, r's €) ~ %gz(e +0)7 L. (19)
This is the main result of our SP calculation. It means that
details of the transport properties depend only on the SP
solution 7 and the average Hamiltonian H, in the correla-
tion C. A similar expression was found for the 2PGF of
weakly disordered Dirac fermions [8].

Discussion.—(i) B = 0: Translational invariance of C,
suggests to study its Fourier components

Clg) = %(2 — cosq, — cos[(V3q; + ¢2)/2]),  (20)

or for the more general case (e.g., for a low-energy ap-
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proximation of H, by Dirac fermions), the Fourier compo-
nents

Clg) = ﬁ jk [Tra(h2) — Trallgs g poltsgy))

Here h;, are the Fourier components of Hy; i.e., for Dirac
fermions we have h; = ko + k,0,. C(g) vanishes at
g = 0 and describes the dispersion of the two-particle
excitations. In contrast to quasiparticles with Hamiltonian
H,, which have low-energy excitations near the Dirac
nodes k # 0, the two-particle excitations at low energies
appear around g = 0. This implies that K(g; €) is a diffu-
sion propagator with diffusion tensor

_2 f Tr2<ahk ahk) 2D
q=0 mn Jk Gk, ak j
Then the main contribution to diffusion comes from the
vicinities of the Dirac points, where the slope of £y is the
strongest. This would justify an approximation of h; by
Dirac fermions. Furthermore, in agreement with physical
intuition, D is monotonically decreasing with increasing

disorder. Finally, the dc conductivity o can be evaluated
via the Kubo formula as

~13*C(g)
Y 2 aqlaq]

82 772
o« —€—K(q: €)l—pe=0 * —5 (22)
JJ 2‘]3 q=V, e g2

in units of e%/h. This result indicates that the minimal
conductivity is not constant but decreases with increasing
disorder. For the regime of strong disorder the conductivity
is proportional to g~ !, which was also found for topologi-
cal disorder [10].

(ii) B # 0: The Hamiltonian H,, appears in C,,. only as

TrZ[HO,rr’HO,r’r] = |drr’(B)|2 + |dr’r(B)|2‘

For a given pair of nearest neighbors (r, r') we have only
one contribution for each pair, namely, |e/#" § Forte; |2, such
that the Peierls phase drops out: |d,.(B)|> = |d,.(0)|>.
Thus, the magnetic-field dependence of the average
2PGF in Eq. (19) is due to the SP solution 7. The latter
can be evaluated from Eq. (14) by expanding the right-

hand side in powers of 7!

4
=g - n—gZZTrz[Ho,rero,rrr] to(nd).  (23)

Again, the B dependence appears only in higher orders of
the expansion. While 7 increases monotonically with g, its
B dependence is suppressed.

Disorder due to potential scattering by impurities has
been ignored in our approach. Including it in the calcula-
tion would affect transport properties at low temperatures
significantly, because it causes localization [27]. It is not
clear, however, whether this type of disorder is relevant in
graphene at the Dirac point.

We conclude that quasiparticles on the honeycomb lat-
tice with random bonds are subject to diffusion. The dif-
fusion coefficient as well as the conductivity decrease with
increasing disorder. For sufficiently strong disorder the
magnetic-field dependence drops out of the transport quan-
tities. This reflects the suppression of an external magnetic
field by disorder, which is consistent with experimental
observations of magnetotransport in graphene [5,6].
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