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We study the Kolmogorov-Johnson-Mehl-Avrami theory of phase conversion in finite volumes. For the
conversion time we find the relationship �con � �nu�1� fd�q��. Here d is the space dimension, �nu the
nucleation time in the volume V, and fd�q� a scaling function. Its dimensionless argument is q � �ex=�nu,
where �ex is an expansion time, defined to be proportional to the diameter of the volume divided by
expansion speed. We calculate fd�q� in one, two, and three dimensions. The often considered limits of
phase conversion via either nucleation or spinodal decomposition are found to be volume-size dependent
concepts, governed by simple power laws for fd�q�.
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Phase conversions are of importance in physics, chem-
istry, and other fields. Examples are numerous and include
crystal physics [1], metallurgy [2], polymer physics [3,4],
ferroelectric domain switching [5], magnetization and
metastability in statistical physics models [6,7], phase
transitions in particle physics [8], as well as ecological
landscapes [9].

Specific phenomena are nucleation and spinodal decom-
position [10]. Conventionally, for a review see [11], nu-
cleation is characterized by metastability, while spinodal
decomposition is considered to be the mechanism by
which phase conversion occurs in an unstable system. We
shall discuss the crossover of these phenomena as function
of the nucleation time, the expansion speed, and the
volume.

In Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory
[12–14] phase conversion is based on the rate of nucleation
of critical nuclei [15] and their subsequent expansion speed
due to a gain in free energy. Independently, this approach
was developed a few years later in a concise paper by
Evans [16]. More recent work derived space-time correla-
tion functions [17] and dealt with screening effects [18].
KJMA theory is formulated in an infinite volume. But in
physics there are no truly infinite volumes. Our investiga-
tion of finite volumes leads to interesting scaling laws.

There are several scenarios of KJMA theory. Some deal
also with noncritical nuclei [14]. We consider here the limit
in which critical nuclei are small enough compared to the
total volume to be considered pointlike. Extensions of our
considerations are possible, but would at present distract
from the main point.

In accordance with KJMA theory we make the following
assumptions: (1) Critical nuclei are created with a constant
nucleation rate R � 1=��nuV� at uniformly distributed ran-
dom positions in the volume V. Let us denote by V0 the
unit volume, and by �0

nu the nucleation time (average time
it takes to create a critical nucleus in the unit volume).
Then the nucleation time in the volume V is given by �nu �
�0

nuV0=V. (2) Subsequent growth: A nucleus created at

time ti covers at time t > ti the spherical volume Vi�t� �
Cd�v�t� ti��

d, where v is the expansion speed, d the space
dimension, and Cd a dimension-dependent factor (C1 � 2,
C2 � �, and C3 � 4�=3). (3) The converted volume
Vcon�t� is the union of the volumes Vi�t� [Vi�t� � 0 for
t � ti], intersected by the total volume V.

Assumption 1 allows the creation of nuclei in the already
converted volume Vcon�t�. From assumptions 2 and 3 it is
clear that they do not contribute to phase conversion, and,
therefore, they are not added to the number of nuclei in the
volume V. Note that the KJMA theory of phase conversion
is kinetic with no details of the responsible interactions
involved.

The time it takes to transform the bulk system into the
new phase is the conversion time �con. There is some
arbitrariness in its definition. In essence any converted
volume in the range 0:5 � Vcon��con�=V < 1, e.g.,
Vcon��con�=V � 0:90, defines a suitable conversion time.
Only Vcon��con�=V � 1 is not admissible: �con will then
diverge in the infinite volume limit, because due to statis-
tical fluctuations some points stay always unconverted in
an infinite volume. This is well known in KJMA theory and
even more obvious for systems with fluctuations due to
interactions.

For practical reasons we define the conversion time by
distributing a finite number of trial points uniformly over
the volume and its boundaries and taking �con as the time at
which all points are first covered by the new phase. The
number of points is taken to be a constant, independent of
the size of the volume. We restrict ourselves to cubic
volumes of size V � Ld, and choose as trial points the
sites of a hypercubic lattice that includes the 2d corner
points of V. Extensions to other geometries are straightfor-
ward. In particular geometries can be chosen to fit actual
experimental situations.

To calculate the average conversion time turns out to be
easier than one might expect. There are only two indepen-
dent parameters with the dimension of a time, �0

nu and an
expansion time �ex, which we define by
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 �ex �
L
v
: (1)

The functional dependence �con��0
nu; v; V� is determined by

a scaling function fd�q� [19] as presented below. Instead of
�0

nu we use the nucleation time �nu of the total volume V,

 �nu �
�0

nu

�d
with �d �

V

V0 ; (2)

and the scaling function fd�q� is defined by

 

�con

�nu
� �1� fd�q�� with q �

�ex

�nu
: (3)

The reduction from three variables to one is a major
simplification. That �con=�nu depends indeed only on q is
shown in the following. Natural independent variables are
�0

nu, v, and L. Using �nu instead of �0
nu as an independent

variable is mathematically equivalent. One can then define
three transformations, which leave q invariant:
(1) L01 � �1L, v01 � �1v; (2) L02 � �2L, �02;nu � �2�

0
nu;

(3) v03 � �3v, �03;nu � �0nu=�3. Combinations of the three
transformations allow us to create all values �0nu, v0, and L0

for which q0 � q holds. Now, nuclei at the appropriately
scaled positions in the volume V 0 � �L0�d are created with
the same probabilities as in the initial volume V. In case (1)
the change in volume (length) is compensated by the
increase in velocity, so that the conversion time stays
constant, �01;con � �con. In case (2) the nucleation time is
scaled, so that the fixed velocity v creates up to scaling in
size the same patterns as before. Therefore, the conversion
time scales according to �02;con � �2�0con and �02;con=�

0
2;nu �

�con=�nu. Similarly, in case (3) the change in velocity is
compensated by the change of the nucleation time, so that
the created patterns stay the same and �03;con=�

0
3;nu �

�con=�nu holds.
In the limit of large expansion speeds (v! 1, volume

fixed) we find

 fsmall
d �q� � Adq for q! 0; (4)

where Ad is a dimension and geometry dependent constant.
In this limit, creation of a first critical nucleus takes much
longer than its subsequent expansion to the size of the
volume V. Therefore, creation of several critical nuclei is
unlikely and �nu becomes the time of metastability. The
conversion time is determined by the farthest away corner
of the Ld volume, once the nucleus is created. By integra-
tion over the possible positions of the nucleus one finds
A1 � 0:75, A2 � 1:0704, A3 � 1:315, and (for string the-
orists) A10 � 2:4110. The limit (4) describes the nucleation
scenario of phase conversion.

At large q, the function fd�q� is up to a multiplicative
constant also analytically determined. Imagine, we calcu-
late the conversion time simultaneously on nd noninteract-
ing systems with identical parameters (nucleation time,
volume, expansion speed). The conversion time is a ran-

dom variable, which has the same mean value �con on each
system. Let us combine them into one. For �ex 	 �nu the
effects due to propagation of phase conversion over the
boundaries becomes negligible and �0con averaged over the
combined system is �0con � �con. As we have q! q0 �
nd�1q and �nu ! �0nu � n�d�nu for V ! V 0 � ndV, invari-
ance of the conversion time requires

 flarge
d �q� � Bdq

d=�d�1� for q! 1: (5)

This is the limit of spinodal conversion, obtained in vol-
umes of fixed size for small expansion speeds, v! 0.
Many critical nuclei contribute then to the phase conver-
sion. For physical parameters �0

nu, v fixed, and volume
V ! 1, i.e., �! 1 in Eq. (2), the theory always describes
spinodal decomposition, because q scales as q! �d�1q.

This is in contradiction to the mean-field approach,
which leads on infinite volumes to a nucleation region
with a so-called spinodal endpoint [7,11]. Within the
more realistic scenario of KJMA theory the spinodal can
only be an effective concept for finite volumes. In contrast
to the comparison with mean-field theory, our results are
consistent with studies of magnetic field driven phase
conversion by Rikvold et al. [20], in which a ‘‘dynamical
spinodal field’’ separates the two regimes.

Let us turn to the general evaluation of fd�q� by
Monte Carlo (MC) simulations (here not Markov chain
MC calculations). The implementation of the nucleation
process is relatively straightforward and allows variations
of the expansion speed, and hence q, over many orders of
magnitudes. This comes, because we have to implement
only kinetics and no complicating dynamics (for instance,
due to interactions between spins). We use 100 trial points
in 1D, 10
 10 � 100 in 2D, and 5
 5
 5 � 125 in 3D.
For a volume of edge length one this corresponds, in the
lattice of trial points, to a lattice spacing of 1=99 in 1D, 1=9
in 2D, and 1=4 in 3D.

The results in 1D, 2D, and 3D together with the analyti-
cal q! 0 and q! 1 asymptotic behavior are presented in
Fig. 1 on a log-log scale. When taking data our step size
was a factor of two in q. For cross-checks at a few q values
various combinations of �0

nu, v, and V were used that
combine to the same q value.

Performing Gaussian difference tests (e.g., Ref. [21]),
the first four data are in each case consistent with the small
q approximation (4). For q � qmin

d , qmin
d listed in Table I,

the data are found to agree with an relative error jfd�q� �
fsmall
d �q�j=fd�q�< 5% with the analytical small q behav-

ior. In the same way they are consistent with the large q
behavior (5) for q � qmax

d , where the Bd values listed in
Table I are determined by one-parameter fits to nd data
with the largest q values [the chi-squared per degree of
freedom of the fit, �2

d�pdf� � �2
d=�nd � 1�, is also given].

In the sense of these approximations we have nucleation
for q < qmin

d , spinodal decomposition for q > qmax
d , and a

crossover region in between.
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In particular, we have in this classification for a 3D cubic
box �nu=�con < 0:02 for spinodal decomposition and
�nu=�con > 0:43 for nucleation. While the coefficients Ad
and Bd in Eqs. (4) and (5) depend on the geometry, the
power laws do not. Therefore, they can be employed to
characterize the limits universally.

In Fig. 2 we exhibit the end of the small q region on a
scale with higher resolution than that of the logarithmic
scale of Fig. 1. Correspondingly the beginning of the large
q region in 2D and 3D is shown in Fig. 3. In 1D the
asymptotic behavior sets in for considerably larger q val-
ues. The reason appears to be that there are not yet suffi-
ciently many nuclei participating in the phase conversion.
At the largest q value of Fig. 3 (q � 512) the deviation of
the 1D MC result from its large q asymptotics is still 11%.

The average number of participating nuclei Nnuclei is
smaller than �con=�nu of Eq. (3) as nuclei created inside
an already converted region do not contribute. In Fig. 4 we
show the ratio R � Nnuclei=��con=�nu�. For large q it ap-
proaches R � 0:38 in 1D and R � 0:42 in 2D and 3D.
These numbers are specific to our choice of trial points.

We continue with illustrations. Changes in physical
conditions, for instance of the temperature, can influence
the nucleation time �0

nu, the expansion speed v, and the
volume V.

Let us assume a constant volume. If the nucleation time
varies from �nu ! �0nu for fixed expansion velocity v, while
we stay in the spinodal region q > qmax

d , the scaling q!
q0 � ��nu=�0nu�q yields for the conversion time change

�0con � ��0nu=�nu�
1=�d�1��con. If in the same situation the

nucleation time �nu is fixed and the expansion speed varies
from v! v0, we find for the new conversion time �0con �

�v=v0�d=�d�1��con. In the nucleation region the correspond-
ing equations are �0con � ��

0
nu=�nu��con � Ad��nu � �

0
nu�q

and �0con=�nu � 1� Ad�v=v
0�q, respectively.

Assume a 2D Ising model on a 100
 100 lattice is
prepared in its initial state with all spins down. It is then
simulated by Markov chain Monte Carlo calculations [21]
below the critical temperature and with a magnetic field
opposite to the initial orientation of the spins. For suitable
choices of temperature and magnetic field the following
numbers are realistic: (A) Seven nucleation events in one
sweep with a subsequent expansion speed of 5 lattice
spacings in 20 sweeps. (B) One nucleation event in 1680
sweeps and a subsequent expansion speed of 50 lattice sites
in 800 sweeps. A brief calculation puts case (A) with q �
2800 solidly into the spinodal asymptotics, while with q �
0:95 case (B) is at the end of the nucleation region.
Enlarging the lattice to 1000
 1000 sites moves case
(B) to q � 953 into the spinodal region.

Consider a metastable liquid in a cubic box of size
�0:1 m�3 with a nucleation time of 1 min in that volume

TABLE I. Bd (5) for our trial points from MC simulations.

1D 2D 3D

qmin
d 0.5 1 1
qmax
d 4096 128 64
Bd 2.3285 (60) 2.0990 (53) 2.1427 (43)
nd, �2

d�pdf� 6, 1.24 7, 1.07 10, 0.74
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FIG. 2 (color online). Scaling function: End of the small q
region (4).
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FIG. 3 (color online). Scaling function: Beginning of the large
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FIG. 1 (color online). Scaling function fd�q� versus q.
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and a subsequent explosionlike conversion at the speed of
100 km=h. With q � 6
 10�5 this is deep in the nuclea-
tion region. This is no longer true if the same system is a
pool of size �10 m�3. Then we are at q � 6000, though the
preparation of such a large homogeneous system may in
practice be impossible.

Conversion times of the order of minutes are observed in
polyethylene crystallization [22]. To be definite, let �con �
180 s. If the nucleation time for the relevant volume is
�nu � 3:6 s, we would classify the process as spinodal
decomposition, and for �nu � 77:8 s as nucleation, with
the crossover region in the range 3:6 s< �nu < 77:8 s.

Let us consider the deconfining phase transition [8] and
choose �1 F�3 as the unit volume which defines �0

nu.
Suppose the relevant volume at a heavy ion collider is of
size �10 F�3, and that the deconfined phase spreads out at
the speed of light once a nucleus is created. What is the
range of nucleation times so that the phase conversion
(confined ! deconfined) proceeds by spinodal decompo-
sition (q � 64)? The answer is �0

nu < 5
 10�22 s. This
estimate goes up when the expansion speed is slower
than the speed of light.

Conclusions.—Our equations will need corrections,
once the critical nuclei can no longer be considered point-
like, and their size introduces a new dimensional parame-
ter. Further, correlations between nuclei are presently
neglected and the constant expansion speed of KJMA
theory may be too crude an approximation for the actual
dynamical, stochastic expansion process. Nevertheless, we
think that the scaling laws outlined in this paper are at the
heart of the distinction between the nucleation and spino-
dal regimes of phase transitions.
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FIG. 4 (color online). Ratio of contributing nuclei versus q.
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