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A.C. Barato and H. Hinrichsen

Universitdt Wiirzburg, Fakultdt fiir Physik und Astronomie, 97074 Wiirzburg, Germany
(Received 25 February 2008; published 22 April 2008)

We demonstrate that absorbing phase transitions in one dimension may be induced by the dynamics of a
single site. As an example, we consider a one-dimensional model of diffusing particles, where a single site
at the boundary evolves according to the dynamics of a contact process. As the rate for offspring
production at this site is varied, the model exhibits a phase transition from a fluctuating active phase into
an absorbing state. The universal properties of the transition are analyzed by numerical simulations and

approximation techniques.
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Nonequilibrium phase transitions differ significantly
from ordinary transitions at thermal equilibrium. For in-
stance, under nonequilibrium conditions, continuous phase
transitions may occur even in one-dimensional systems. A
well-known example is the contact process for epidemic
spreading [1], where diffusing particles multiply at a rate of
A and self-annihilate at a rate of 1. Depending on A, the
contact process either is able to sustain a positive stationary
density of particles or approaches a so-called absorbing
state without particles from where it cannot escape. The
active and the absorbing phases are separated by a con-
tinuous transition belonging to the universality class of
directed percolation (DP) [2—-4], which plays a paradig-
matic role like the Ising model in equilibrium statistical
mechanics. Recently, the critical behavior of DP was con-
firmed experimentally for the first time by Takeuchi et al.
[5].

As continuous phase transitions involve long-range cor-
relations, boundary effects may play an important role. In
the context of absorbing phase transitions, previous studies
focused primarily on DP confined to parabolas [6,7] and
active walls [8], as well as absorbing walls and edges
[9,10]. Although such boundaries influence the dynamics
deep in the bulk, the universality class of the bulk transition
is not changed inherently; rather, it is extended by an
additional exponent describing the order parameter near
the boundary. A completely different situation is encoun-
tered in systems where boundary effects induce a new type
of transition which would be absent without the boundary
[11]. Such boundary-induced phase transitions have been
studied, for example, in models for diffusive transport
[12,13] and traffic flow [14].

In this Letter, we present an example of a boundary-
induced phase transition from a fluctuating phase into an
absorbing state. To this end, we consider a simple one-
dimensional model, where the leftmost site evolves in the
same way as in the contact process while particles in the
bulk diffuse according to a symmetric exclusion process.
Varying the rate for offspring production at the leftmost
site, the model exhibits a nonequilibrium phase transition
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from a fluctuating active phase into an absorbing state with
a nontrivial critical behavior. A similar problem with cata-
Iytic creation and pair annihilation at a single site in the
center and diffusion in the bulk was studied in Ref. [15] by
field-theoretic methods.

Definition of the model.—The model is defined on a
semi-infinite one-dimensional chain of sitesi =0, 1,2, ...
which are either empty (s; = 0) or occupied by a particle
(s; = 1) (see Fig. 1). Starting at time ¢ = 0 with a single
particle at the origin (s; = 6;(), the model evolves by
random-sequential updates as follows. For each update,
one of the particles is randomly selected. If the selected
particle is located at the leftmost site i = 0, it undergoes
the same dynamics as in a standard contact process,
namely: (a) With probability p = A/(1 + A), a new parti-
cle is created at the right neighbor, provided that this site is
empty. This can be done by setting s; := 1. (b) Otherwise,
the particle at the leftmost site is destroyed by setting s, :=
0. On the other hand, if the particle is not located at the
origin, it diffuses according to a symmetric exclusion
process; i.e., it jumps to a randomly chosen nearest neigh-
bor, provided that the target site is empty. As usual in
models with random-sequential dynamics, each attempted
update corresponds to a time increment of 1/N(z), where
N(¢) is the actual number of particles. On a computer, the
dynamical rule defined above can be implemented effi-
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FIG. 1 (color online). Definition of the model: Particles diffuse
on a semi-infinite one-dimensional chain according to a sym-
metric exclusion process. The only exception is the leftmost site,
where particles multiply and annihilate as in a contact process.
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FIG. 2 (color online). Typical temporal evolution of the model
at criticality, starting with a single particle at the leftmost site.
The color scale visualizes the particle density. At the leftmost
site, one observes intermittent bursts of activity.

ciently by using a dynamically generated list of particle
coordinates, eliminating possible finite-size effects.
Phenomenological properties.—In the bulk, the sym-
metric exclusion process preserves the number of particles,
whereas this conservation law is violated at the boundary,
where offspring production and removal compete with one
another. For p = 0, the leftmost site acts as a sink where
particles disappear, thereby depleting the whole system
diffusively until the dynamics reaches the absorbing state
without particles. On the other hand, for p = 1, the left-
most site is permanently occupied, providing a steady
source of particles at the left boundary so that the system
approaches a fully occupied stationary state. In between, it
turns out that the (infinite) system is able to maintain a

nonvanishing stationary density of particles even for finite
values of p down to a well-defined critical threshold p.,..

Starting with a single particle at the boundary, the pro-
cess evolves as follows. Initially, the particle at the leftmost
site either disappears or creates another particle at its right
neighbor. As soon as this freshly created particle diffuses
away into the bulk, the particle at the leftmost site may
create and send out further particles until it disappears by
spontaneous removal. The average number of newly cre-
ated particles depends on p and is of order 1 in the sta-
tionary state.

Each created particle performs a one-dimensional ran-
dom walk in the bulk, which in one dimension is bound to
return to the origin after a finite time. The returning parti-
cles may either disappear or release another bunch of
particles. As demonstrated in Fig. 2, particles are not
created continuously but in the form of intermittent bursts.
Apparently, these irregular bursts are responsible for the
nontrivial properties of the model.

Seed simulations at criticality.—The simplest order pa-
rameter describing the phase transition is the occupation
probability py(7) = (so(#)) of the leftmost site averaged
over many independent runs. For small p < 1, this quan-
tity is dominated by the first-return probability of a one-
dimensional random walk which is known to decay with
time as 1~3/2 (see, e.g., [16]). This power-law decay char-
acterizes the inactive phase of the system. Contrarily, for
large values of p, the returning particle is likely to multiply
frequently, flooding the bulk of the system with freshly
created particles and thereby maintaining a constant non-
zero density. In between, we find a phase transition located
at the critical point (see Fig. 3)

p. = 0.74435(15), (1)
at which p(7) decays as
po(t) ~ 179, a = 0.50(1), 2)

suggesting the exact value a = 1/2.
Another well-known order parameter is the survival
probability P,(¢) to find at least one particle in the entire
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FIG. 3 (color online).

Numerical simulation of the process starting with a single active site at the origin for different values of

A = p — p.. The graphs show the density at the leftmost site py(z), the survival probability P,(z), and the number of particles (N(7))

averaged over all runs, respectively.
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system at time z. At the transition, this quantity is found to
decay algebraically as

P(=1%  8=0.1502). 3)

This estimate shows a slight systematic drift and may be
compatible with the rational value § = 1/6.

Finally, it is useful to study the number of particles
(N(r)) averaged over all runs. For small p, this quantity
decreases as (N(r)) ~ ¢~ /2, while, for large values of p,
one finds an algebraic increase (N(r)) ~ t*'/2 because of
the diffusive bulk dynamics. At the transition, (N(z)) stays
almost constant close to 1, suggesting a vanishing exponent

(N(@)y ~ 1, 6 =0. 4)
Note that (N(7)) is averaged over all runs. If the number of
particles was averaged over surviving runs, it would ac-
tually grow as 7°.

We also determined the density profile p(x, ) in the bulk
(see Fig. 4). At criticality, this profile turns out to be an
almost perfect Gaussian distribution, obeying the scaling
form p(x, 1) = ~/2f(x2/r). This indicates a simple diffu-
sive behavior in the bulk. On the other hand, the density of
neighboring pairs of particles is not a Gaussian, demon-
strating that the random walks are mutually correlated.

Off-critical seed simulations.—As can be seen in Fig. 3,
for p > p. the average density at the boundary first de-
creases algebraically, goes through a minimum, and then
increases again until it reaches a stationary value.
Surprisingly, the time at which the minimum is reached
scales roughly as (p — p,.) 3, while the stationary value is
reached at a typical time that scales as (p — p.)~*
Therefore, it is impossible to produce a data collapse by
plotting p(¢)/(p — p.)? versus t(p — p.)". However, by
collapsing the crossover from increase to saturation, one
would consistently get the exponents 8 = 1 and v = 4.

Homogeneous initial state.—Starting with a fully occu-
pied lattice at criticality, the special dynamics at the left-
most site gradually depletes the system, leading to a slow
decay of the particle density at the boundary. In numerical
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FIG. 4 (color online). Left: Data collapse of the rescaled
profiles of the particle density at criticality for ¢, =
64,128, ...,8192 (blue) compared to a Gaussian distribution
(red). Inset: The same data collapse in a double-logarithmic
representation. Right: Density of particles (blue) and pairs
(green) at t, = 10°, demonstrating the presence of correlations
which decay in space as x~ /2, indicating that B/v, = 1/2.

simulations, we find that the density decays slowly as =2,
where 6 = 0.15(2) is the same exponent as in Eq. (3),
which describes the survival of a cluster generated from
a single seed. As will be explained in a forthcoming
publication, this can be traced back to a duality of the
two situations under time reversal.

Mean-field analysis.—In a simple mean-field approxi-
mation, the n-site probability distribution is approximated
by the product of n single-site probabilities, neglecting
correlations. By defining 7;(¢) as the first moment of the
probability distribution at site i, the mean-field equations
read

d”l’]() 1
ar ( P)770 2”’71( ”70) (5)
d 1
TN — pyo(1 = my) + = (02 + momy = 27m1),  (6)
dt 2
dn; _1 .
L= (4 + M=y —2m;) for i=23,.... (7
o (Mt i = 2m) )

By solving these equations for 7;(0) = §;,, we find that
the critical point is pMF = 1/2, where Eq. (6) reduces to a
diffusion equation, reproducing the critical exponents
BMF =1 and a™M¥ = 1/2. However, by starting with a
fully occupied lattice 1;(0) = 1, one gets a decay ny(r) ~
¢t~ /4, differing from the simulation result [17].

Possible relation to a non-Markovian process.—To
understand the transition of the model from a different
point of view, let us now adopt the perspective of the
leftmost site. If this site is active, it may create new
particles, sending them out for a random walk in the
bulk. From the prospect of the leftmost site, the specific
trajectory of this random walk does not matter; the only
question of interest will be at which time the particle
returns to the origin.

Let us now assume that the diffusing particles in the bulk
do not interact. For a symmetric exclusion process, this
approximation is justified if the particle densities are suffi-
ciently small. With this approximation, a particle emitted
at the leftmost site will return after a time Ar which is
distributed algebraically as [16]

P(A7) ~ (Ar)~3/2, (8)

By following Ref. [15], the problem can be reformulated as
a single-site process with a non-Markovian dynamics. Let
s(f) = 0, 1 denote the occupancy of a single site at time ¢ €
N, which can be implemented as a one-dimensional array
s[t] on a computer. The array is initialized by s(z) := &,,
corresponding to a single particle at the boundary. The
single-site model then evolves according to the following
dynamical rules: (i) Select the lowest ¢ for which s(¢) = 1.
(ii) With probability u, generate a waiting time Af accord-
ing to the distribution (8), truncate it to an integer, and set
s(t + Ar) := 1. (iii) Otherwise (with probability 1-u), set
s(t) := 0. These steps are repeated until the system enters
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the absorbing state or ¢ exceeds a predetermined maximal
time.

By simulating this non-Markovian single-site process
using a dynamically generated list, we can go up to 10'?
time steps, finding the critical point . = 0.57426(1) and
the correct exponent @ = 0.500(5), as well as a consistent
exponent for the survival probability & = 0.16(1).
Moreover, the off-critical properties of the original model
are faithfully reproduced. This suggests that the non-
Markovian process defined above may even be equivalent
to the original model regarding its asymptotic critical
behavior. This is surprising, since the approximation
ignores the exclusion principle of the random walkers in
the bulk.

Relation to a non-Markovian Langevin equation.—Let
us finally describe the single-site process in the continuum
limit. As shown in previous studies (see, e.g., [18] and
references therein), a non-Markovian dynamics by alge-
braically distributed waiting times P(Af) ~ At~ !~ is gen-
erated by so-called fractional derivatives 9}, which are
defined by

afp(t) = 3\f|1|(;<) ﬁ it [p() — p(t = 1)), (9

where k € [0, 1] and N (k) = —I'(—«) is a normaliza-
tion constant. This suggests that the non-Markovian single-
site. model may be effectively described by a DP-like
Langevin equation without space dependence, in which
the local time derivative is replaced by a fractional deriva-
tive with k = 1/2 generating temporal Levy flights:

3912 p(1) = ap(1) — p(1)* + £(r). (10)

Here the parameter a plays the role of & — .., the second
term accounts for the fact that the leftmost site cannot be
activated twice, and ¢ is a multiplicative noise with corre-
lations (£(¢)&(¢')) = p(r)8(¢ — ¢'). Dimensional analysis
confirms that the noise is relevant under temporal rescal-
ing, supporting the expectation that the model exhibits
non-mean-field properties. We note that this Langevin
equation can be converted by standard techniques into a
Fokker Planck equation of the form

92P(p, 1) = ~a,l(ap — pP(p, 0] + 5 3pP(p, D]

This equation can be decoupled by a Laplace transforma-
tion in ¢, but so far we were not able to solve the resulting
ordinary differential equations analytically.

Towards a scaling picture.—Based on these results, we
conjecture that the full model is described by an order
parameter field at the boundary with the exponent 8 = 1
and a response field with the same exponent 8/ = 1. The
diffusive dynamics in the bulk, characterized by a dynami-
cal exponent z = 2, is slaved to the boundary dynamics,
and thus it does not induce additional order parameter
exponents. Moreover, the numerical results indicate that

the scaling exponents are given by v =4 and v; = 2.
The decay exponent « describes a two-point function, and
hence it is given by a = (8 + B')/v = 1/2, while the
slip exponent is consistently described by the hyperscaling
relation § = (B + B’ — v;)/v = 0. The only exponent
which is so far not explained within this picture is the
survival exponent 6 = 0.16. We believe that this can be
traced back to the non-Markovian character of Eq. (10),
which requires a new understanding of the survival
probability.

In summary, we have studied a model that exhibits a
novel class of boundary-induced phase transition from a
fluctuating phase into an absorbing state. This is probably
the simplest nontrivial absorbing phase transition, much
simpler than ordinary DP, but nevertheless exhibits prop-
erties which cannot be explained within mean-field theory.
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