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We study the effect of Anderson localization on the expansion of a Bose-Einstein condensate, released
from a harmonic trap, in a 3D random potential. We use scaling arguments and the self-consistent theory
of localization to show that the long-time behavior of the condensate density is controlled by a single
parameter equal to the ratio of the mobility edge and the chemical potential of the condensate. We find that
the two critical exponents of the localization transition determine the evolution of the condensate density
in time and space.
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Anderson localization [1] is a ubiquitous phenomenon
which occurs in the propagation of waves (electrons in
solids [1], microwaves [2], light [3], ultrasound [4]) in
random media. Multiple scattering from random obstacles
and the resulting destructive interference suppress wave
propagation and can lead to exponentially localized
eigenstates.

Recently there has been much interest in the possibility
of observing Anderson localization of Bose-Einstein con-
densates obtained by trapping and cooling bosonic atoms
[5–8]. A Bose-Einstein condensate is characterized by a
macroscopic occupation of a single quantum state [9] and
hence exhibits quantum, wavelike behavior despite its
macroscopic size. Atomic Bose-Einstein condensates sub-
jected to random external (optical) potentials are poten-
tially good candidates for observing Anderson localization
of matter waves. Up to now, the experiments have focused
on 1D configurations [5], where all single-particle eigen-
states are localized. In a typical experiment, the condensate
is created in an optical or magneto-optical trap. The trap is
then turned off and the condensate is allowed to expand.

In this Letter we study the expansion of the Bose-
Einstein condensate in a 3D random potential. Unlike in
one dimension, a critical energy (the mobility edge �c)
exists in three dimensions, which separates extended and
localized states. An eigenstate is extended (localized) if the
corresponding energy is larger (smaller) than �c. When the
condensate is released from the trap, the atoms achieve
kinetic energies up to the chemical potential � of the
trapped condensate. For weak disorder �c < �, and a
fraction of atoms diffuses away, whereas the remainder is
localized, as was pointed out in [7]. We show here that,
surprisingly, even for strong disorder �c > � only a frac-
tion of the condensate will be localized. We study the full
dynamics of the condensate expansion by accounting for
weak localization at energies � > �c, strong localization at
� < �c, and critical behavior around the mobility edge. Our
main result is that the effect of disorder on the expansion of
the condensate is controlled by a single parameter �c=�,

and that Anderson localization plays an important role
even when the chemical potential of the condensate � is
much larger than the mobility edge �c. We show that the
behavior of the average condensate density �n�r; t� at large
distances r and long times t is governed by the critical
exponents � and s of the localization transition. This could
provide a direct way to measure these exponents. The
density of the localized part of the condensate �n�r;1�
does not decay exponentially with r, as one could have
expected, but follows a power law.

Consider a Bose-Einstein condensate ofN � 1 atoms of
mass m trapped in a 3D spherically symmetric harmonic
potential V!�r�, characterized by the trap frequency !, to
which we add a Gaussian uncorrelated random potential
V�r�: B��r� � V�r�V�r��r� � u���r�, where the hori-
zontal bar denotes averaging over an ensemble of realiza-
tions of the random potential V�r�. The wave function
 �r; t� of the condensate obeys the (mean-field) Gross-
Pitaevskii equation:
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where g measures the strength of repulsive interactions
between atoms. We consider a situation in which the
random potential V�r� is initially absent [6,7]. A sudden
turn off of the confining potential V!�r� then gives rise to a
rapid expansion of the condensate. During a time t * t0 �
1=! the initial potential energy of the trapped condensate
is converted into kinetic energy [9,10]. The kinetic energy
per atom becomes typically of the order of the chemical
potential � of the trapped condensate. The calculation that
we present below applies both in the regime of strong
(�� @!) and weak (�� @!) interactions. Whereas the
former is realized in current experiments [5], the latter can,
in principle, be reached using magnetic Feshbach reso-
nances [11].

The random potential is switched on at a time t > t0.
This creates a new energy scale at the mobility edge �c. At
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this stage the kinetic energy of the condensate becomes
much larger than its interaction energy, and we can set g �
0 in Eq. (1). The neglect of the nonlinear term in Eq. (1) for
times t > t0 can be justified in the absence of disorder [9]
and has been validated in the presence of a random poten-
tial by numerical simulations in one dimension [6]. Based
on this, we expect that the neglect of interactions at long
times t > t0 should be valid in three dimensions as well, at
least when the interactions are not too strong. The analysis
of the complete nonlinear Eq. (1) is a formidable task that
falls far beyond the scope of this Letter. Even in one
dimension controversial numerical results have been re-
ported recently [12]. We emphasize that even though we
neglect interactions between atoms for t > t0, we fully take
them into account at earlier times t < t0 and the strength of
interactions g enters our final results through �.

The experimentally relevant quantity is the time-
dependent condensate density n�r; t� � j �r; t�j2. For large
distances r� ‘ (where ‘ � @

4�=um2 is the mean free
path [13]) and at long times t� @=�c, we derive the
following expression for the condensate density, averaged
over an ensemble of random realizations of V�r�,

 �n�r; t� �
Z d3k
�2��3

j��k�j2
Z 1
�1

d�A�k; ��P��r; t�: (2)

Here P��r; t� is the probability density to find a particle of
energy �, initially located at the origin, in the vicinity of r
after a time t (‘‘probability of quantum diffusion’’ [13]),
A�k; �� is the spectral function, and ��k� is the Fourier
transform of the wave function��r� of the condensate after
the first stage of expansion (i.e. after a time t * t0).
Physically, d3kj��k�j2=�2��3 is the number of atoms
with a momentum around @k at the time when the random
potential is switched on, and d�A�k; �� is the probability to
find an atom with energy around � among all atoms with
momentum @k, in the presence of the random potential. In
terms of the Green’s function of the Schrödinger equation
G�r; t�, the Fourier transform of P��r; t� with respect to
time t is P��r;�� � G�r; ���=2�G��r; ���=2�=2���,
where �� is the density of states, and A�k; �� �
�Im �G�k; ��=�. In previous work [7], a free-space expres-
sion A�k; �� / ���� �k� was adopted with �k �
@

2k2=2m. This appears to be a bad approximation for
energies near and below the mobility edge, where the
uncertainty in energy is large due to disorder.

To find the spectral function A�k; �� we go beyond the
first-order Born approximation [6,14], and use the so-
called self-consistent Born approximation. We solve self-
consistently the equations for the Dyson Green’s function
�G: �G�k; �� � 	�� �k ���k; ��
�1, and the self-energy

�: ��k; �� �
R
d3k0B�k� k0� �G�k0; ��. For the uncorre-

lated random potential we obtain �G�k; �� � 	�� �� �
�c=4� �k � i@=2��


�1 for � > ��. The mean free time
is �� � �@4=

���
2
p
m3=2u

��������������
�� ��
p

. The edge of the spectrum
�� depends on a cutoff needed to regularize the divergence
of the integral over k0 in the equation for �. The value of ��

is not important for the rest of our analysis because all
relevant quantities depend on �� ��. The mobility edge �c
is assumed to obey the condition k��c�‘ � 1 and is located
at �c � �� � @

2=2m‘2.
Another important ingredient of Eq. (2) is the probabil-

ity of quantum diffusion P��r; t�. At large r� ‘ and
�� � its Fourier transform can be found in the hydro-
dynamic limit of quantum transport theory: P��r;�� �
exp	�r

���������������������������
�i�=D����

p

=4�D����r [15], where D���� is

the dynamic diffusion coefficient. As we will see below,
the large-r behavior of �n�r; t� is dominated by atoms with
energies � * �c, which justifies the use of the above ex-
pression for P��r;�� for t� @=�c.

Finally, the momentum distribution of the expanded
condensate at the time when the random potential is
switched on is assumed to be given by j��k�j2 /
1� k2=k2

� for k < k� �
�����������
2m�
p

=@ and 0 otherwise. This
expression follows from the dynamic scaling [10] for t�
t0 and�� @!. In the absence of interactions �� @! is a
small energy scale. If �< �c, Eq. (2) reduces to �n�r; t� �
N
R
1
�1 d�A�0; ��P��r; t� and the precise profile of j��k�j2

has no importance.
In the following we will discriminate between localized

(� < �c), diffusing (� > �c), and anomalously diffusing
(� ’ �c) atoms. In the limit of very long times atoms
with energies above the mobility edge have diffused
away, and only localized atoms contribute to the conden-
sate density �n�r; t! 1� at any finite distance r. For these
atoms we can set D���� � �i��2��� [15,16]. Inspection
of Eq. (2) then reveals that �n�r;1� is determined by the
critical dependence of the localization length � on the
energy � in the vicinity of the mobility edge �c: ���� /
j�� �cj

��. We obtain

 �n�r;1� / f��c=��
N

r3

�
‘
r

�
1=�
; (3)

where f�x� / x3=2 for x� 1 and f�x� ’ const for x� 1.
This important result demonstrates that the critical expo-
nent � can be determined from the spatial profile of the
condensate density at long times. While the value of � is
not known for continuous disordered potentials, numerical
solutions of the Anderson tight-binding model yield � ’
1:5 [17], the self-consistent theory of localization predicts
� � 1 [18], and a claim of � ’ 0:5 has been recently made
for light in TiO2 powders [19].

The stationary density profile (3) may take a long time to
be reached, especially for large distances r. It is therefore
important to look for dynamical signatures of Anderson
localization. The complete density of the condensate can
be represented as a sum of the stationary part, considered
above, and a time-dependent part: �n�r; t� � �n�r;1� �
� �n�r; t�. At a given r� ‘ and for short times, � �n�r; t� is
dominated by the fastest atoms of the condensate. For weak
disorder (�c � �), these atoms typically have kinetic en-
ergies of order �, well above the mobility edge. Hence,
they are almost unaffected by localization effects and
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diffuse with the ‘‘classical’’ diffusion coefficient D���� ’

D�0�� � ‘2=3��. The integral over energies in Eq. (2) can be
then evaluated using the saddle point method. For a given
distance r, Eq. (2) reaches a maximum at the ‘‘arrival
time’’

 tarrival ’
r2

6D�0��
: (4)

This result is equal to that found for a quasimonochromatic
wave packet with central energy �.

At long times and for any �c=�, the dynamic part of the
condensate density is dominated by the critical behavior of
D���� at energies � * �c:D���� / j�� �cjs [15,16]. The
contribution of the critically diffusing atoms to the atomic
density is

 � �n�r; t� / f��c=��
N

r3

�
r2

D�0��c t

�
1=s
; (5)

where the function f�x� is the same as in Eq. (3) and where
s > 2=3 is required to assure convergence of the integra-
tion over energies. Equation (5) reveals that the critical
exponent s can be directly measured in an experiment by
observing the dynamics of expansion of the atomic cloud at
large times. The scaling theory of localization predicts s �
� for 3D disorder [16]. A measurement of the critical
exponents in an experiment with a Bose-Einstein conden-
sate could provide a spectacular test of the (one-parameter)
scaling theory. Note that the decay of � �n with time pre-
dicted by Eq. (5) is slower than what would have been
obtained if localization were neglected (� �n� 1=t3=2).
Hence, localization effects modify the dynamics of the
condensate expansion even when �c � �.

An important time scale can be obtained from the com-
parison of Eqs. (3) and (5). Indeed, the convergence of the
time-dependent profile �n�r; t� to �n�r;1� given by Eq. (3)
should become apparent when Eqs. (3) and (5) become of
the same order. This happens at the ‘‘localization time’’

 tloc /
@

�c

�
r
‘

�
2�s=�

: (6)

If we accept that � � s in three dimensions [16], we obtain
tloc / r3 independent of � � s. Note that the localization
time (6) exceeds the arrival time (4), if r is larger than the
healing length 1=k� of the initial condensate.

We now consider the anomalously diffusing atoms with
energies very close to the mobility edge. Indeed, in a
narrow energy strip j�� �cj< �c�j�j=�c�1=3s the critical
diffusion, that led to Eq. (5), is taken over by the anoma-
lous diffusion: D���� / ��i��1=3 [20]. Analysis shows
that for t > tloc the anomalously diffusing atoms dominate
the dynamic part of the condensate density:

 � �n�r; t� / f��c=��
N

r‘2

�
�ct
@

�
�2=3�1=3s

: (7)

However, at t� tloc the density of anomalously diffusing

atoms (7) is already of the same order as the density of
localized atoms (3). Therefore, the contribution of anom-
alously diffusing atoms may be difficult to observe in an
experiment.

Up to here we have presented a general analysis based
on scaling ideas only. The self-consistent theory of local-
ization [18] allows us to calculate �n�r; t� from Eq. (2)
without any additional assumptions. In this theory D����
obeys

 

D�0��
D����

� 1�
1

���

Z qmax

0

d3q
�2��3

P��q;��; (8)

where qmax � �=3‘. The self-consistent theory predicts
the critical exponents � � s � 1. We plot �n�r;1� and
� �n�r; t� obtained from Eqs. (2) and (8) in Figs. 1 and 2.
As follows from Fig. 1, for sufficiently large r the density
profile �n�r;1� decays as a power-law 1=r4 for all �c=�, as
predicted by Eq. (3) with � � 1. The dynamic part of the
atomic density � �n�r; t� is shown in Fig. 2 and reaches a
maximum at times of order of tarrival given by Eq. (4), at
least when �c & �. The maximum shifts to shorter times
when �c=� increases. As predicted by Eq. (5), the plots of
� �n�r; t�r3=N for different r fall on a universal curve, when
shown as functions of t=tarrival at fixed �c=�. All curves in
Fig. 2 follow the 1=t asymptote for long times. This is in
agreement with Eq. (5) for t < tloc and Eq. (7) for t > tloc,
with s � 1.

The number of atoms that stay localized after the time
tloc can be found by integrating Eq. (2) over r and by
restricting the integration over energies to � < �c. We

FIG. 1 (color online). Profiles of the average atomic density,
associated with the localized part of the atomic cloud, at long
times. The solid lines are obtained from the self-consistent
theory of localization for three different ratios of mobility
edge �c and chemical potential � of the initial condensate. For
each �c=�, the fraction of localized atoms floc is given. The
dashed line shows the asymptote �n / 1=r4 followed by all curves
for large r.
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find for the fraction of localized atoms floc ’ �5=2��
��c=��3=2 for �c � � and floc ’ 0:45 for �c � �.
Remarkably, this result is independent of the model used
for the localization length ���� and, in particular, indepen-
dent of the critical exponent �. The conclusion that even
for strong disorder (�c � �) only a fraction of the con-
densate stays localized is a surprising outcome. It is due to
the large-energy tail of the spectral function derived above
for the uncorrelated disorder: A�k; �� / 1=�3=2. Atoms
with high energies exhibit diffuse behavior, even though
their initial kinetic energies were small (�k � �). This
explains the small value of floc. It is straightforward to
show that for a potential with correlation radius r0 the
large-energy tail of A�k; �� is suppressed for energies
larger than �0 � �c�‘=r0�

2. Thus, correlations seem to
help in localizing more atoms.

The available 1D experiments [5] and theoretical devel-
opments [14] allow us to estimate the minimal realistic
values of the mean free path ‘ in 3D optical speckle
potentials to be in the range of 1 to 10 �m. From these
values we obtain �c=�� 10�4–10�2 for 87Rb atoms and
�=@� 10 kHz [5]. The corresponding arrival (localiza-
tion) time is in the range of 1 to 10 ms (100 ms to 100 s)
for r � 5‘. With the lifetimes of Bose-Einstein conden-
sates attaining 20 s [21], these estimations demonstrate that
our theoretical predictions are within the reach of current
experiments.

In conclusion, we have shown that the long-time large-
distance behavior of the average density �n�r; t� of a Bose-

Einstein condensate expanding in a 3D random potential is
governed by a single parameter equal to the ratio of the
mobility edge �c to the chemical potential � of the con-
densate. The critical exponents of the Anderson localiza-
tion transition � and s determine the evolution of �n�r; t� in
time and space. Our results open a new way to measure the
critical exponents in an experiment.
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FIG. 2 (color online). Profiles of the dynamic part of the
average atomic density obtained from the self-consistent theory
of localization (solid lines). The time is given in units of tarrival

defined by Eq. (4). The dashed lines show 1=t asymptotes. At a
given ratio of mobility edge �c and chemical potential �,
� �n�r; t�r3=N for different r (different colors) fall on a universal
curve. For clarity, the curves corresponding to �c=� � 1 and 10
are shifted downwards by 1 and 2 units, respectively. The inset
shows the complete atomic densities �n�r; t� obtained by adding
� �n shown in the main plot and �n�r;1� of Fig. 1.
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