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Order-Disorder Phase Transition in a Chaotic System
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For soft-mode turbulence, which is essentially the spatiotemporal chaos caused by the nonlinear
interaction between convective modes and Goldstone modes in electroconvection of homeotropic
nematics, a type of order-disorder phase transition was revealed, in which a new order parameter was
introduced as pattern ordering. We calculated the spatial correlation function and the anisotropy of the
convective patterns as a 2D XY system because the convective wave vector could freely rotate in the
homeotropic system. We found the hidden order in the chaotic patterns observed beyond the Lifshitz
frequency f7, and a transition from a disordered to a hidden ordered state occurred at the f; with the

increase of the frequency of the applied voltages.
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Phase transitions have been researched extensively in
several branches of physics [1]. The most well-known
example is a transition from the ferromagnetic phase to
the paramagnetic phase by changing temperature 7', being
a category of order-disorder phase transition due to sponta-
neous symmetry breaking, where thermal fluctuations play
an important role [2]. Therefore, in order to understand
such transitions more deeply, the statistical properties and
dynamics of fluctuations must be clarified. For nonequilib-
rium open systems, it is thought that nonthermal fluctua-
tions such as chaos play the similar role to thermal
fluctuations. In the present study, we examine spatiotem-
poral chaos (STC) in a system with a specific symmetry,
which induces Goldstone modes. Our STC is called soft-
mode turbulence (SMT) and is observed in electroconvec-
tion systems of nematic liquid crystals (NLCs) [3].

There are two different alignments for NLCs, namely,
the planar alignment and the homeotropic alignment. In the
planar (homeotropic) alignment, the director n of an NLC
is parallel (perpendicular) to the x-y plane. In the planar
system, a convective stripe pattern appears when the ac
voltage V applied to a thin layer of the planar NLC exceeds
a threshold V.., and a homogeneous wave vector q of the
stripe pattern appears. On the other hand, in the homeo-
tropic system, the first transition called the Fréedericksz
transition occurs at V = Vg, below V.. The director tilts
with respect to the z axis by the transition, and its projec-
tion on the x-y plane is called the C(r)-director, where r =
(x, ). Since the transition spontaneously breaks the con-
tinuous rotational symmetry on the x-y plane, the rotation
of C(r) behaves as Goldstone modes [4-6]. Electro-
convection also appears in the homeotropic system in the
same manner as the tilted director appears in the planar
system. The nonlinear interaction between the resulting
convective modes q and the Goldstone modes C leads to
the SMT [3]. The local wave vector q(r) can be defined in
the SMT (see Fig. 1 in [7]). There are two types of stripe
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patterns in the electroconvection of the NLC in the planar
system, namely, normal rolls (NR) and oblique rolls (OR)
[8]. With respect to the initial director, the homogeneous
wave vector of convection is parallel and oblique in the NR
and the OR, respectively. Similar to the NR and the OR in
the planar case, the local convective wave vector ¢(r) in the
SMT is either parallel to the local director C(r) in the NR
or oblique in the OR in the homeotropic system [4]. In the
phase diagram of the applied voltage—ac frequency (V —
f), there exists the Lifshitz point as a codimension two

FIG. 1. Images of the SMT (¢ = 0.1) in cell II in (a) the OR
regime (f = 200 Hz) and (b) the NR regime (f = 1000 Hz).
The spectra, which are calculated from (a) and (b), are shown in
(c) and (d), respectively.

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.100.164503

PRL 100, 164503 (2008)

PHYSICAL REVIEW LETTERS

week ending
25 APRIL 2008

point. The frequency at this point is called the Lifshitz
frequency f1, which separates the OR (f < f; ) and the NR
regimes (f > fr) [9,10]. Although the SMT appears in
both regimes of NR and OR [11], the interaction between
the convective and Goldstone modes are different [12—-14].
The properties of fluctuations in the SMT therefore depend
on the details of the interaction. We investigated the spatial
fluctuations in the SMT using the spatial correlation func-
tion of q(r). In the present study, we report experimental
results on the order-disorder phase transition of chaotic
patterns in a nonequilibrium open system characterized by
a newly defined order parameter, called pattern ordering.

Because of the existence of the Goldstone modes in the
SMT, we are interested in comparison with a well-known
2D XY model, which also possesses the Goldstone modes,
and as a consequence no ordered state in the model is
realized [15]. Nevertheless, the Kosterlitz-Thouless (KT)
phase transition was discovered in the conventional model
[16]. With respect to the dimension of systems as well as
degree of freedom of variables, both the SMT and the
conventional 2D XY model are similar, although the
present study considers chaos in a nonequilibrium open
system. Therefore, research by analogy with the 2D XY
model may be useful to understand the statistical properties
of the SMT.

The experimental setup and the sample cell using a
nematic liquid crystal p-methoxy-benziliden-p’-n-buthyl-
annyline (MBBA) were similar to those in the previous
paper [7]. In the present experiment, we used two sample
cells, cell 1 (d=50=%2 um) and cell Il (d=51=
2 um). Here, d is the cell thickness. Although the proper-
ties of both cells were slightly different, the results ob-
tained from both were qualitatively the same. The
electrodes in both cells are circular and have the same
diameter of 13.0 mm. The experimental temperature was
stabilized to be 30.00 = 0.05 °C. The dielectric constant €|,
and the electric conductivity o of the material in cell I (IT)
were 3.53*0.05 (330%x0.10) and 33=*0.1X
10070 "m™" 27+01X1077 Q" 'm™1), respec-
tively. An alternating voltage V,.(f) = +/2V cos(2mf1)
was applied perpendicular to the sample. We define a
normalized control parameter &€ = (V/V,)?> — 1. The pat-
tern images in the x-y plane were captured using a CCD
camera (QImaging Retiga 2000R-Sy) mounted on a micro-
scope and software (QCAPTURE PRO v.5). The size of the
captured images was 1.14 mm X 1.14 mm (1000 pixel X
1000 pixel). The image analysis was performed by custom
software.

By observing patterns with the change of frequency at
fixed € = 0.05, we obtained f; for cell I and cell II as
380 Hz and 250 Hz, respectively [17]. Figures 1(a) and
1(b) show typical images in the OR regime observed below
f1, and the NR regime beyond f}, respectively. We per-
formed the following procedures to obtain the images.
First, the ac voltage was increased by the Fréedericksz

transition state, and we waited for a sufficient time
(= 30 min) to remove the inhomogeneous director ori-
entation before a convection state. Then, we set the desired
positive control parameter € by jumping to the voltage
above a convective threshold, and captured the images
after waiting for 10 min in order to avoid the transient
state. A spectrum shown in Fig. 1(c) corresponding to
Fig. 1(a) indicates an isotropic property of the pattern in
the OR regime. On the other hand, the anisotropic feature
of the pattern shown in Fig. 1(b) can be recognized both in
the real image and in the spectrum. Although we can
qualitatively distinguish the SMT patterns in the OR and
the NR regimes taking their spectra, we need more quanti-
tative information for further discussion.

Now, let us introduce the spatial correlation function
S(r) defined as

S(r) = (cos2[¢(r + ry) — ¢ (ro) ]y, (1

where r = |r|. Here, ¢(r) is the azimuthal angle of the
local wave vector q(r) = (gocosd(r), gy sing(r)), where
qo is assumed to be constant and — 7 < ¢(r) = 7. The
angle ¢(r) is obtained by the local spectrum method
[7,18]. We show the correlation function S(r) for patterns
in the OR and NR regimes by changing f (fixed &) in Fig. 2.
We fitted the data by the least mean square method to the
function S(r) = S, + (1 — Sy,)exp(—r/&) [19]. S, for
the OR regime is equal to zero, and S, for the NR regime
is finite. This can be interpreted as the absence of macro-
scopic order in the SMT patterns in the OR regime, but the
order exists in the NR regime.

However, the local spectrum method needs one arbitrary
parameter, i.e., the clipped image size (expressed as m in

S(r)

FIG. 2. Spatial correlation S(r) for the OR (circle) and NR
(rectangular) regimes for a fixed ¢ = 0.05, f = 300 Hz (OR),
f =500 Hz (NR). These data were taken from cell I. The thick
lines are determined by the fitting (see text).
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Ref. [7]). To avoid the obscurity in ¢(r) due to that, a new
order parameter obtained directly from 2D spectra is in-
troduced. Here, since the q(r) field can freely rotate and its
norm is almost constant, it has the same degree of freedom
as that in the 2D XY model. Therefore, we use the formula
of magnetization in the 2D XY model to the present
system. A scalar magnetization in a discrete 2D XY model
is defined as M = (1/N)SY_ cos(¢; — ¢), where ¢ =
tan~ (2, sing,;/2; cos¢,) is averaged ¢; and N is the
number of cites in the system [20]. The formula can be
applied to our pattern ordering M, which can show the
order of q(r). Since the q(r) vector has a symmetry with
respect to ¢-rotation (q — —q symmetry), the pattern
ordering should be written as

™7, B(¢h) cos2(¢p — ($))db
/7%, B($)d

M, = (cos2(¢ — () =

2

where (¢) and B(¢) are the spatial average and the distri-
bution function of ¢(r), respectively [18]. Using the fast
Fourier transform (FFT), the amplitude spectrum J(q) =
J(q, @) can be obtained from the intensity of the SMT
pattern I(x, y). B(¢) can be obtained as J(q,, ¢) when the
magnitude of q is assumed to be a constant gy. A com-
pletely isotropic pattern corresponding to B(¢) = constant
gives M, =0, and a completely ordered pattern gives
M, = 1 because B(¢) = By6(¢p — ¢), where By, is con-
stant and ¢, lay along the preferred axis. Therefore, M, is
bounded in 0 = M, = 1. Actually, since the spectrum is
broad in the q-direction [see Figs. 1(c) and 1(d)], we used

B(¢) = [©739J(q, $)dg instead of B(¢) = J(gp, ¢),
where 2Ag indicates the broadness of the spectrum. We
captured 10 images of 1000 pixel X 1000 pixel in size and
a resolution of 12 bits for a fixed control parameter (¢ =
0.1) and frequency. We calculated the pattern ordering
from Eq. (2) for each image. Averaging the pattern order-
ing from 10 images, M, is obtained. The frequency de-
pendence of M[z, for fixed € = 0.1 is shown in Fig. 3.
Figure 3 shows that a transition from zero to nonzero M,
occurs at a transition frequency f, = 270 Hz, which is
close to the above-mentioned Lifshitz frequency fi =
250 Hz. Here, the small difference between f; and f
was due to the small difference in & for each experiment,
that is fi is equal to fi. Namely, M, = 0 for the OR
regime, whereas M, # 0 for the NR regime. This means
the SMT patterns in the OR and NR regimes correspond to
the paramagnetic and ferromagnetic phases, respectively.
The transition of the SMT patterns from the NR regime to
the OR regime can be regarded as a kind of order-disorder
phase transition. To interpret the above result, we use the
analogy between the SMT and the conventional 2D XY
model. As mentioned above, the degree of freedom of the
vector fields and the spatial dimension of the systems are
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FIG. 3 (color online). Square pattern ordering Mf, versus fre-
quency f for the constant control parameter (¢ = 0.1) measured
in cell II.

the same. However, the causes of the disorders are differ-
ent. The disorder in the 2D XY model is caused by thermal
fluctuations, whereas the disorder in the present system is
caused by spatiotemporal chaos due to the nonlinear inter-
action between C and q. Therefore, we should point out
that the different mechanisms in the SMT and the 2D XY
model lead to the different phenomena. Thus, in the present
system, the KT transition does not occur, whereas an order-
disorder phase transition is absent in the conventional
2D XY model.

To understand the role of the nonlinear interaction in
both regimes, we refer to the coupled equations of the
convective amplitude and the local azimuthal angle
a(r, 1) of C(r, t) [12-14]. For simplicity, we consider a
stationary solution of « in the spatially uniform case. For
the OR case, there is no stationary solution of « due to the
existence of uncompensated torque on the C director. The
torque generates global fluctuations in both the C director
and the q-wave vector through the nonlinear interaction
between them. As a result, the anisotropy in the initial
direction is rapidly broken, and no long-range correlation
exists. On the other hand, for the NR case, there is a
stationary solution a = 0, but it is unstable. It is thought
that the instability causes the C director to locally fluctuate
around the initial direction. The local fluctuations may not
break the initial anisotropy, and the wavelength of the
fluctuations should be short.

Finally, the results of the present study are summarized
as follows. By introducing a new order parameter, pattern
ordering M ,, for the soft-mode turbulence, which is caused
by the interaction between short wavelength modes and
Goldstone modes, we reveal the order-disorder phase tran-
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sition from the OR regime to the NR regime for increasing
applied frequency. The present transition is due to the
change in the symmetry for the interaction between the
short wavelength and the Goldstone modes. Generally, in
order to investigate the behaviors of spin systems, consid-
eration should be given not only to the dimensions of the
systems and the degrees of freedom of the spin variables,
but also to the properties of the fluctuating force.
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