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When a dilute polymer solution experiences capillary thinning, it forms an almost uniformly cylindrical
thread, which we study experimentally. In the last stages of thinning, when polymers have become fully
stretched, the filament becomes prone to instabilities, of which we describe two: a novel breathing
instability, originating from the edge of the filament, and a sinusoidal instability in the interior, which
ultimately gives rise to a blistering pattern of beads on the filament. We describe the linear instability with
a spatial resolution of 80 nm in the disturbance amplitude. For sufficiently high polymer concentrations,
the filament eventually separates out into a ‘‘solid’’ phase of entangled polymers, connected by fluid
beads. A solid polymer fiber of about 100 nm thickness remains, which is essentially permanent.
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When a drop falls from a faucet, surface tension drives
the fluid motion toward breakup in finite time, and a drop
separates. This pinch-off occurs in a localized fashion [1],
and the neighborhood of the point of breakup is described
by a similarity solution [2]. If however very small amounts
of high molecular weight polymer are added, an almost
perfectly cylindrical thread is formed instead [3–6]. The
reason is that wherever there is a local decrease in radius,
fluid elements are stretched, and the polymers along with
it. This will increase the extensional viscosity of the fluid-
polymer mixture [7], and further flow is inhibited, thus
forming a uniform and stable filament.

For most of this Letter, we produce a filament by placing
a drop of liquid between two solid plates, which are rapidly
drawn apart [8]. (In a simple and educational version of
this experiment, a drop of saliva is placed between thumb
and index finger.) A single filament forms between the
plates, which thins as surface tension drains fluid from
the filament, and into two roughly hemispherical reservoirs
at the end plates.

This Letter addresses the later stages of the thinning of
the polymeric filament, when polymers have come close to
their full extension. Thus the mechanism that formerly
used to stabilize the thread is no longer effective, and
tiny beads begin to appear on the filament (see Fig. 1,
images 5 and 6) [9]. We will refer to this process central
to the present study as ‘‘blistering.’’ This instability occurs
when the filament is only in the order of several microns in
radius, requiring extreme spatial resolution. If the concen-
tration of polymer is sufficiently high, the filament can
become very long lived compared to the time scale of a
dissolved polymer.

Theoretically, the period of exponential thinning has
recently been described within a long-wavelength descrip-
tion [6]. Nonetheless, the full three-dimensional, axisym-
metric problem remains unsolved. The effect of finite
polymer extensibility has been studied numerically in
[10], once more using a long-wavelength model. The

filament is found to fail near its end via a localized simi-
larity solution, in contrast to the much more complex
scenario found here. The first clear experimental descrip-
tion of blistering is found in [11,12], which focuses on the
later stages of the instability, in the course of which drop-
lets with a hierarchy of sizes are found. We first focus on
the onset of the blistering instability, for which widely
diverging theoretical explanations have been expressed in
the past [6,10,11,13].

The observations we report here have general validity
for a variety of polymer-solvent systems. Experi-
ments have been performed with polyethylenoxide (PEO)
in water, PEO in xylol, human saliva, polyacryl-co-

FIG. 1 (color online). The minimum radius hmin as a function
of time. Not all data points are shown. Between numbers 1 and 3,
the curve is well described by hmin�t� � h0 exp��t=�� with � �
130� 30 ms (red, straight line). A plateau is reached between 3
and 4 which is associated with an instability near the end plates,
followed by rapid pinching. Between 5 and 6 the curve can be
approximated with two linear laws (dotted blue and dashed green
lines). For further explanation see text.
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acrylicacid in water-sugar, polysterol in diethyl phthalate
and dimethyl furane. This covers a wide range of different
polymers of different polarities and with vapor pressures
ranging between less than 1 Pa and more than 2000 Pa.
However, we focus here on PEO as an established model
system, and details on other systems will be published
elsewhere. The experiments were performed with aqueous
solutions of PEO of molecular weights MW � �1–8� �
106 amu and concentrations 0:010 � c � 0:2 wt %.
While the formation of a filament and its subsequent
instability could be observed well below the overlap con-
centration [7] of polymers, we focused on higher concen-
trations, as the process is slower and easier to observe. Our
reference system has MW � 4� 106 amu and c �
0:2 wt %, with cov � 0:07 wt % the overlap concentration.
The samples were characterized with a Thermo Haake
MARS rheometer using cone plate geometries. The zero
shear viscosity was �0 � 50 mPa s and in the range of
shear rates 0:1 � _� � 2000 shear thinning was present
down to a value of �1 � 4 mPa s [14]. The surface tension
was determined by the pendant drop method to �	
60:9 mN=m.

We used a capillary breakup device similar to the one
described in [11,15]. This setup is also commercially
available to measure the extensional rheology of suspen-
sions (CaBER, Thermo Fisher Scientific, Karlsruhe,
Germany). To ensure maximum reproducibility, we used
the following protocol: plates of diameter d � 2 mm were
held at a distance of l � 2:5 mm for the purpose of relaxa-
tion for several seconds. Then the plates are drawn to l �
3:5 mm within 40 ms, only slightly exceeding the limit at
which a capillary bridge of the solvent experiences a
Rayleigh-Plateau instability and breakup. The thinning
process is observed with an IDT X-Vision X3 digital
high-speed video camera with Nikon Microscope objec-
tives of up to 20� magnification. At the highest magnifi-
cation, the diffraction limited resolution is 0:6 �m, and
depth of field is 5 �m. A Halogen backlight allows frame
rates up to 6000 frames per second and exposition times
down to 10 �s.

Figure 1 shows a typical recording of the thread radius
hmin�t� in the cylindric region in a semilogarithmic plot.
For plug flow in a cylindrical filament, the elongation rate
is determined from _� � �2d lnh=dt; thus, _� is constant for
most of the filament thinning, which follows an exponen-
tial law (the regime between 1 and 2 in Fig. 1) [4]. The
axial stress �zz supported by the polymers balances the
increasing capillary pressure �=hmin, which means that the
extensional viscosity �E 
 �zz= _� � �=�hmin _�� also in-
creases exponentially. At 3 (see Fig. 1) the thread radius
first has a plateau, and then thinning accelerates again. The
reason for the acceleration is that the polymers have almost
reached their maximum extension, so their extensional
viscosity can no longer increase. But this means that _�
has to increase rapidly, implying a steep increase in the

slope of logh�t�, as seen in Fig. 1. Once �E has reached a
plateau, which we estimate at hmin � 12 �m to be
�E �12 �m� � 330 Pa s, the filament behaves essentially
like a Newtonian fluid [10], and is thus subject to a capil-
lary instability [16], as confirmed below. Note that this
value of the extensional viscosity corresponds to an in-
crease by 5 orders of magnitude over �water � 10�3 Pa s of
the solvent.

Before we describe the novel instability that occurs
between 2 and 3 in Fig. 1, which is localized near the
end plates, we concentrate on the subsequent spatially
uniform, linear instability which is shown in Fig. 2 (be-
tween 4 and 5 in Fig. 1). At first, no oscillations are visible
on the images of Fig. 2; however, as seen in Fig. 3, we are

FIG. 2. Growth of a sinusoidal instability of the viscoelastic
filament that develops into a group of droplets on the thinning
filament. The spacing of the pictures is 300�1 s. The time
window between 4 and 5 in Fig. 1 is represented by the images
up to 0.287 s showing the range of exponential growth.
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FIG. 3 (color online). Main: The growth of the amplitude of a
sinusoidal surface deformation on a filament of radius R0 �
10 �m. The origin of the time axis has been shifted relatively to
Fig. 1. Circles and crosses are experimental data of two different
runs; from the latter we were able to detect amplitudes as low as
80 nm. The straight line and the dotted line are exponential fits,
giving an inverse growth rate of ! � 9:3� 0:1 ms. Inset: The
sinusoidal surface deformation at t � 18:7 ms. Points are ex-
perimental data and the solid line is a fit with a sine and a linear
offset. The selected wavelength is �=R0 � 12� 0:9.
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able to resolve perturbations down to an amplitude of A �
80 nm, corresponding to significant superresolution [17].
This is done by fitting the profile with a sine function with
wave number, phase, and amplitude as free parameters
over many wavelengths (see inset). The algorithm con-
verged down to the stated maximum resolution. The last
four pictures of Fig. 2 show the beginning of the nonlinear
stages of the instability, finally leading to the formation of
smaller secondary droplets [11,12]. In the main panel of
Fig. 3 we plot the growth of the sinusoidal approximation
over time, an example of which is shown in the inset. Over
more than a decade, the growth is very well described by an
exponential, providing a clear signature of a linear insta-
bility, which develops uniformly in space.

From a fit to the exponential, we find an inverse growth
rate of 1=! � 9:3� 0:1 ms. Linear stability of a viscous
fluid thread [16] predicts! � �=�6R0�eff�, which gives an
estimated extensional viscosity of �eff � 9 Pa s� 2, more
than 1 order of magnitude smaller than the extensional
viscosity �E �12 �m� estimated above. At the same time,
we are able to fit—as expected [16]—a linear law hmin �
�0:44� 10�3 m=s�t in the range 8> hmin > 4 �m.
Comparing to the law hmin � 0:07�=�eff�t for viscous
pinching [18], this gives �eff � 10 Pa s, which agrees
nicely. We do not have a ready explanation for the discrep-
ancy between �eff and �E �12 �m�. Among possible
explanations are nonuniformities in the polymer concen-
tration (see below), and transient relaxation of polymer
stresses during the plateau between 3 and 4 in Fig. 1, when
there is no flow. A kink in the linear shrinking behavior at
hmin 	 3:8 �m toward a less steep slope of �0:17�
10�3 m=s could either be seen as a first indication for the
onset of a draining process discussed below or as a tran-
sition from the viscous to the inertial-viscous pinch-off
regime [18].

The formation of successive generations of beads has
already been studied extensively [11,12]; we focus on the
very final stages of the thinning process, when the forma-
tion of new beads has come to rest (6 in Fig. 1). If the
polymer concentration was greater than 1000 ppm, the
filament connecting two beads never breaks, and a pattern
as shown in Fig. 4(a) is formed. What is remarkable is that
most beads are off center with respect to the filament.
Comparison with the problem of fluid drops on a fiber
[19] shows that there must be a finite contact angle between
the drops and the filament for such a symmetry breaking to
occur. In other words, the thin filament must have formed a
(solid) phase different from that of the drops [20].

To confirm this idea, we produced the scanning-elec-
tron-microscopy (SEM) images shown in Fig. 4. Object
slides were pulled quickly through the liquid bridge, before
the accumulated elastic stress would lead it to retract into a
single droplet. Figure 4(b) shows two remnants of two
droplets being connected by a persistent thin thread.
Increased magnification [4(c) and 4(d)] allowed us to

estimate the diameter of the fiber as 75–150 nm.
Assuming a constant polymer concentration of the solu-
tion, and taking for the fiber the density of PEO, the
amount of polymer in such a fiber equals to a 2000 ppm
solution with a diameter of 3 �m, thereby representing a
lower bound for the onset of the concentration process that
leads to this solid fiber, but which is likely to start earlier.
Our physical picture is that polymers become entangled,
while solvent drains from the filament, leading to even
higher polymer concentration and increased entanglement;
i.e., a flow induced phase separation takes place [21].
Further evidence for this concentration process was al-
ready found in [22], where birefringence measurements
were performed to examine molecular conformations in
the breakup process. We can exclude evaporation to be a
factor in the formation of solid fibers, based on our esti-
mates of evaporation rates, as well as preliminary experi-
ments in a two-fluid system.

Finally, we would like to describe the transition regime
(between 2 and 3 in Fig. 1) where an instability of the
homogenous elongational flow originates from the bound-
ary, and is reminiscent of phenomena reported in [13]. The
transition region at the edge of the filament was described
in detail in [6] for the case that polymers are far from
stretched. At full stretch, the transition region constricts [as
seen in the last shape in the inset of Fig. 5 (full triangles)],
thus inhibiting the flow out of the filament. The most
sensitive probe for the flow is tiny bubbles inside the
filament, whose trajectories are shown in Fig. 5. During
the constriction phase, the flow stops, and the tracer posi-
tions form a plateau. In the absence of flow, polymers relax
inside the filament, and elastic stresses are eventually no
longer able to sustain the capillary pressure. Fluid from the

FIG. 4 (color online). (a) The final state of the filament. Beads
are formed off center relative to the thread. (b) SEM image of
two beads, connected by a thread (intermediate resolution). The
structure was caught and dried upon the substrate (c) Another
example of the structure, the red box indicating a close-up at
high magnification shown in (d). The diameter of the fiber can be
as small as 70 nm.
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filament empties into the end cap, causing a sudden flow,
which appears as a jump in bubble position in Fig. 5. The
process repeats itself periodically, on a time scale that
increases from step to step, but which is of the same order
of magnitude as the polymer relaxation time.

The height of the final jump gives a characteristic length
scale of 150 �m, which is comparable to the wavelengths
of periodic disturbances on the filament (Fig. 2). In prin-
ciple, each of the plateaus shown in Fig. 5 should result in a
corresponding plateau in hmin. However, the plateaus are
too small to be resolved, apart from the last two between 3
and 4 in Fig. 1. At the end of the plateaus the filament
shrinks again by draining liquid into the reservoir at the
end plates or into a large bead that typically forms in the
middle of the filament; see [9].

In conclusion, we have demonstrated three key phe-
nomena: (i) Between 2 and 3 in Fig. 1, the trumpet-shaped
transition region connecting the filament to the reservoirs
constricts periodically, interrupting the flow. (ii) The blis-
tering instability of the filament, which leads to beads, is a
linear capillary instability (between 4 and 5 in Fig. 1). As
the polymers reach full stretch, their contribution is once
more Newtonian, but with a viscosity that is many times
that of the unstretched state. (iii) Using electron micros-
copy, we provide evidence that the filament remains intact
in its latest stages, because polymer strands become suffi-
ciently concentrated to become solidlike. The most com-
pelling evidence for this fact is that the contact angle

between the thread and the beads sitting on it becomes
finite. Existing theoretical models are clearly inadequate in
addressing this polymer behavior at full stretch.
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FIG. 5. Trajectories of two bubbles in the filament; they move
in parallel, indicating uniform flow inside the filament. First the
bubbles are convected by the extensional flow produced by the
thinning. Then their position undergoes a sequence of plateaus,
associated with consecutive contractions and relaxations—the
‘‘breathing’’ at the very end of the filament, shown in the inset.
The breathing correspondents to the red shaded region between 2
and 3 in Fig. 1. At 3, the bubbles run out of the field of view.
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