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We analyze second order parametric processes in a silica microsphere coated with radially aligned
nonlinear optical molecules. In a high-Q nonlinear microsphere, we discover that it is possible to achieve
ultralow threshold parametric oscillation that obeys the rule of angular momentum conservation. Based on
symmetry considerations, one can also implement parametric processes that naturally generate quantum
entangled photon pairs. Practical issues regarding implementation of the nonlinear microsphere are also
discussed.
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Because of its unrivaled low propagation loss, silica
glass has become a very important medium for the study
of nonlinear optics [1]. However, under the standard dipole
approximation, bulk silica glass, being centrosymmetric,
cannot possess any second order nonlinearity. Con-
sequently, investigation of nonlinear optics in silica-based
materials focuses primarily on third order processes such
as Kerr effects. In a recent Letter [2], we demonstrated that
a silica fiber coated with radially aligned nonlinear mole-
cules, despite its highly symmetric geometry, can exhibit
large and thermodynamically stable second order nonline-
arity. Both theoretically and experimentally, evidence that
centrosymmetry does not preclude second order nonlinear
response has been reported in the context of colloidal
particles in bulk solution [3–5]. Existing work in this
area, however, focuses on particles with a relatively small
size, with dimension of the order of 1 �m or less.
Therefore, to the best of our knowledge, the possibility
of using high-quality factor whispering gallery (WG)
modes in a microsphere [6–8] to generate strong second
order nonlinear responses has not been explored. In this
Letter, we investigate second order parametric processes
within a nonlinear microsphere, which consists of a silica
microsphere coated with radially aligned nonlinear mole-
cules, as illustrated in Fig. 1(a). Because of the high-QWG
modes and their symmetry properties, we find that it is
possible to demonstrate ultralow threshold parametric os-
cillation and achieve symmetry-enforced quantum
entanglement.

The WG modes in a microsphere can be classified as
either transverse electric (TE) or transverse magnetic
(TM). For a TM mode, by using Eqs. (9.118) and (10.60)
in Ref. [9], we can express its electric field as:
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_
r is the radial unit vector, Z is the wave impedance,

k is the dielectric wave vector, fl�r� is a linear combination

of the lth order spherical Bessel functions, and X
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, with Ylm��;’� being spherical har-

monics. The subscript q is the radial quantum number and
refers to the number of radial nodes in fl�r�. The magnetic

field of the WG mode in Eq. (1) is given by H
*

qlm �

fl�r�X
*

lm��;’� [9]. We use the normalization ofRRR
jH
*

qlmj
2r2drd� � R3, which is equivalent toR

jfl�r�j2r2dr � R3, with fl�r� dimensionless. We denote
the WG mode in Eq. (1) as jq; l;mi.

FIG. 1 (color online). (a) Schematic of a nonlinear micro-
sphere. (b) A nonlinear microsphere coupled to a fiber taper. A
pump high-Q WG mode can be excited through taper-
microsphere coupling. The signal and idler photons can be
coupled out by using the same fiber taper or through an addi-
tional fiber taper or optical prism.
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We now consider a nonlinear microsphere coupled to a
fiber taper, as shown in Fig. 1(b). By carefully controlling
the distance between the fiber taper and the microsphere, it
is possible to convert almost all optical power in the fiber
taper into a single high-Q WG mode circulating within the
microsphere [10]. This capability suggests that, through
the fiber taper, we can couple pump photons at frequency
!3 into a high-QWG mode jq3; l3; m3i. Through nonlinear
molecules, the pump photons can be split into signal
photons at !1 and idler photons at !2, where !3 � !1 �

!2. We denote the electric field of the pump mode as E
*

3 �

RefA3 exp�i!3t�E
*

q3l3m3
�r
*
�g, where E

*

q3l3m3
�r
*
� is defined in

Eq. (1) and A3 is the mode amplitude. The signal and the
idler fields can be similarly described by using subscripts 1
and 2. Since WG modes have finite linewidth, the photon
frequencies may deviate slightly from the resonant peaks
of WG modes. Consequently, for signal photons, we use
!1 to denote photon frequency and !1;0 to represent the
resonant frequency of the WG mode. Similar notations,
labeled with subscripts 2 and 3, are used for idler and pump
photons, respectively.

Second order parametric processes in the microsphere

are governed by the nonlinear Maxwell’s equation: r�

�r� E
*
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nonlinear polarization P
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is responsible
for the coupling between the three parametric components.
By assuming signal, idler, and pump photons in the WG
modes of jq1; l1; m1i, jq2; l2; m2i, and jq3; l3; m3i and ap-
plying the nonlinear Maxwell’s equation, we find the fol-
lowing equations for mode amplitudes A1, A2, and A3:
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where Qi is the modal Q factor and � represents the
strength of nonlinear coupling. [In deriving Eq. (2), we
assume that the idler wave is spontaneously generated.]
Parametric oscillation occurs under the condition of
dA1=dt � dA2=dt � 0, which leads to !2�!1;0 �

!1�=Q2 � !1�!2;0 �!2�=Q1 and j�j2jA3j
2 �

1
Q1Q2
�

4�!1;0�!1��!2;0�!2�

!1!2
. A particularly simple yet physi-

cally significant solution is the on-resonance case, where
we have !1 � !1;0, !2 � !2;0, and !3 � !1;0 �!2;0.
Under the on-resonance condition, the pump threshold
for parametric oscillation reaches its lowest value and is
determined by

 jA3j �
1

j�j
������������
Q1Q2

p : (3)

Since an all-silica microsphere can possess an extremely
high-quality factor [6,7], Eq. (3) indicates that we need
only very low pump power to achieve parametric
oscillation.

To simplify Eq. (2c), we assume that the ��2� tensor is
dominated by its radial component �rrr. This is consistent
with the configuration of radially aligned nonlinear mole-
cules grown conformally on the microsphere surface [12].
This assumption also implies that we need only to consider
the Er component of the TM modes and ignore any TE
modes, since TE modes have no Er component. Fur-
thermore, we assume that the nonlinear coating thickness
� is small and its index is similar to that of silica glass. This
allows us to approximate the Er field in the nonlinear film
as that of the WG mode at the microsphere surface. With
these considerations, Eq. (2c) becomes

 � � ��l3m3
l1m1;l2m2

"0Z3
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rrrf	l1f

	
l2
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where the impedance Z and the wave vectors refer to the
values in silica glass. In Eq. (4), �l3m3

l1m1;l2m2
is a dimension-

less number that contains two parts, i.e., �l3m3
l1m1;l2m2

�
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���������������������������������������������������������������
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RR
Y	l1m1

Y	l2m2
Yl3m3

d�, which

is
��������������������������������������������������������������������
�2l1 � 1��2l2 � 1�=4��2l3 � 1�

p
hl1l2; 00jl1l2; l30i �

hl1l2; m1m2jl1l2; l3m3i. [See Eq. (3.7.73) of Ref. [13].]
Of particular significance is the appearance of the
Clebsch-Gordan coefficient hl1l2;m1m2jl1l2; l3m3i. Taken
together, Eq. (4) means that any second order nonlinear
processes within the microsphere must obey the rule of
angular momentum conservation: If the signal, idler, and
pump photons are, respectively, in the states of jq1; l1; m1i,
jq2; l2; m2i, and jq3; l3; m3i, they must satisfy m3 � m1 �
m2 and jl1 � l2j 
 l3 
 l1 � l2. Additionally, to satisfy the
on-resonance condition, we require the frequency mis-
match between the three WG modes to be less than the
sum of their individual linewidths, i.e., �! � j!3;0 �
!1;0 �!2;0j 


P3
i�1 !i;0=Qi. By assuming pump photons

in the visible range and all Q factors in the range of 106,
this on-resonance condition is equivalent to requiring the
frequency detuning between the WG modes (�� �
�!=2�) to be less than 1 GHz. Since silica microspheres
possess a large number of high-Q WG modes, satisfying
both the on-resonance condition and the requirement of
angular momentum conservation is not difficult: For a
microsphere with a radius of 15 �m and in the wavelength
range of 200 nm to 3 �m, there are at least 62 sets of WG
modes (excluding any degeneracy factors) that satisfy both
requirements. In our calculations, the WG mode frequen-
cies are obtained by using the field-matching technique in
Ref. [14]. The dispersion of silica glass is fully taken into
account by using the formula on page 8 of Ref. [1]. A
specific example of frequency-matched WG modes is:
q1 � 1, l1 � 110, �1 � 1148:6331 nm (signal); q2 � 2,
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l2 � 138, �2 � 882:3905 nm (idler); q3 � 3, l3 � 248,
�3 � 499:03014 nm (pump). The frequency detuning be-
tween the three modes is 562 MHz. The normalized mode
functions fl�r� of all three WG modes are given in
Fig. 2(a). With l3 � l1 � l2, we can choose m � l for all
three WG modes to satisfy angular momentum conserva-
tion. The pump mode with m � l can be easily excited by
using the configuration in Fig. 1(b) [15].

We can combine Eqs. (1), (3), and (4) to estimate the
electric field strength required for parametric oscillation.
Equations (3) and (4) can give us the threshold value for the
pump mode amplitude A3;thresh. By multiplying A3;thresh

with the Er component in Eq. (1), we estimate that, at
the threshold, the strength of the radial E field within the
nonlinear coating is

 jEr
threshj �

��������������������
l3�l3 � 1�

4�

s
n2k1k2R2

j�l3m3
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p
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���2�rrr
;

(5)

where n is the refractive index of silica glass, and we have
replaced Ylm��; ’� in Eq. (1) with its average value 1=

�������
4�
p

.
To find a numerical estimate for jEr

threshj, we consider the
three WG modes in Fig. 2(a) and use the exact microsphere
and mode parameters given in the previous paragraph. We
also make the following assumptions: (i) We conserva-
tively assume that both Q1 and Q2 are 106; (ii) from
Fig. 2(a), we assume that jfl1j and jfl2j are 1; (iii) we
assume that the nonlinear layer thickness is � � 50 nm

and use ��2�rrr � 14 pm=V, the experimental result in
Ref. [12]. Given these considerations, the threshold value
for the pump radial electric field is estimated to be 1:8�
107 V=m.

For the coupling configuration in Fig. 1(b), we can relate
the threshold electric field strength to the pump power in
the fiber taper. Since the electric field of a TM WG mode is

dominated by its radial component, we can define an
effective mode volume as Veff �

RRR
jErj2dv=�jErj2max=2�,

where jErjmax is the maximum jErj value. With this defi-
nition, we can estimate the pump energy stored in the
microsphere as "0"rjEj2aveVeff=2, where jEjave is the aver-
age electric field strength. From coupled mode analysis
[10,16], the pump power traveling in the fiber taper is
related to the pump energy stored within the microsphere,
which gives Ppump �

!3

4Q3
"0"rjEj2aveVeff . (Here we assume

that the intrinsic cavity loss equals the coupling between
the fiber taper and the microsphere [10].) To obtain a
numerical value for Veff , we use Eq. (1) and fl�r� in
Fig. 2 to calculate Er, from which we determine that the
effective volume for mode j3 248 248i is 190 �m3. Since
the radial E field is proportional to fl�r�, from Fig. 2(a), we
can roughly estimate jEjave as 3 times the magnitude of
jEr

threshj, which is the threshold value given by Eq. (5). By
using jEr

threshj � 1:8� 107 V=m and assuming that Q3 �
106, we find that it requires only a pump power of 9.7 mW
to achieve parametric oscillation. If we increase all three Q
factors to 5� 106, the threshold of parametric oscillation
can be further reduced to only 78 �W. Such an ultralow
threshold is not surprising, since pump threshold power
scales as 1=Q1Q2Q3.

The proposed nonlinear microsphere can also lead to
symmetry-enforced quantum entanglement. To illustrate
this possibility, we focus on the degeneracy between the
jq; l;mi and jq; l;�mi WG modes. This twofold degener-
acy is due to time reversal symmetry and holds true even if
the microsphere deviates from its spherical shape [17].
Now consider two high-Q WG modes jq1; l1; m1i at !1

and jq2; l2; 1�m1i at !2. The pump is a free space
Gaussian beam at !3 � !1 �!2 and is focused on the
microsphere. As shown in Ref. [18], we can expand the
Gaussian beam j�i as a superposition of spherical waves,
i.e., j�i �

P
1
l3�1�	l3 jl3; 1i � 
l3 jl3;�1i�, where the lin-

ear coefficients 	l3 and 
l3 depend on the Gaussian beam
parameters. (We drop the radial node number q, since the
pump beam is no longer confined within the microsphere.)
By following the analysis that leads to Eqs. (2) and (4), we
observe that, as long as there exists one or more l3 in the
range of jl1 � l2j 
 l3 
 l1 � l2, the Gaussian beam,
which contains a large number of jl3; 1i components, can
always generate signal and idler photons in the state of
jq1; l1; m1ijq2; l2; 1�m1i. Yet, due to the twofold degen-
eracy with respect to the signs of the m quantum number,
the jl3;�1i pump component must also generate signal and
idler photons in the state of jq1; l1;�m1ijq2; l2;�1�m1i.
The final state for the signal and idler photons is then a
quantum entangled state of Ajq1; l1; m1ijq2; l2; 1�m1i �
Bjq1; l1;�m1ijq2; l2;�1�m1i, where coefficients A and
B depend on the parameters of the microsphere and the
pump.

Finally, we discuss two practical yet important ques-
tions: the impact of the nonlinear film on the cavity Q

FIG. 2 (color online). (a) The normalized mode functions of
three on-resonant high-Q WG modes. The microsphere radius is
15 �m. (b) The frequency detuning between the three para-
metric components in (a) as a function of the microsphere radius
R. The numerical and the theoretical results are obtained through
field-matching calculations and perturbation analysis in
Ref. [17], respectively.
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factors and the mechanism for tuning the on-resonance
condition. For the nonlinear microsphere, the cavity loss
comes from four sources [14]: WG mode radiation loss,
bulk silica absorption, scattering due to the nonlinear film,
and nonlinear molecule absorption. For silica microspheres
with a radius above 10 �m, the WG mode radiation and
the bulk silica absorption are small and can be ignored in
our analysis [14]. To estimate the scattering loss due to the
nonlinear film, we need two empirical parameters: the
standard deviation � for film thickness and the correlation
length B for film roughness. From atomic force microscope
images in Ref. [19], we can estimate that � � 2 nm and
B � 25 nm. By using Eq. (23) in Ref. [14], we find that the
Q factor due to scattering loss is typically 1� 107. To
account for absorption by the nonlinear molecules, we
note that nonlinear polymer waveguide loss is typically
1 dB=cm [20]. By using this value and Eq. (24) in
Ref. [14], we find that, for a 15 �m silica sphere coated
with a 50 nm thick nonlinear film, the Q factor due to
nonlinear film absorption should be of the order of 2� 106

or greater. In addition, Ref. [21] has reported polymer
microresonators with Q factors as high as 5� 106. With
these considerations, we conclude that it is realistic to
expect nonlinear microspheres with Q factors in the range
of 106.

Experimental work on silica microspheres has found
that they can be slightly elliptical, with ellipticity in the
range of 2% [8]. This slight change in shape has little
impact on the Q factors and the field distributions of the
WG modes. It can, however, shift the WG mode frequency
by an amount of �!=! � �e=6�1� 3m2=l�l� 1�� [17],
where e is the ellipticity and l and m are the angular
quantum numbers. For the set of WG modes shown in
Fig. 2(a) and by assuming that m � l, this shape-induced
frequency shift translates into a 24 GHz difference between
!3;0 and!1;0 �!2;0, which, even though small, breaks the
on-resonance condition. We need, therefore, a mechanism
to adjust this frequency mismatch. We note that, by adjust-
ing microsphere radius, the material dispersion of silica
can produce a small relative shift between the resonant
frequencies of the WG modes. In Fig. 2(b), we show the
frequency detuning between the pump mode j3 248 248i,
signal mode j1 110 110i, and idler mode j2 138 138i as a
function of the microsphere radius. According to Fig. 2(b),
we need only to adjust the microsphere radius by 60 nm to
achieve a 24 GHz shift in frequency mismatch, and

Ref. [22] has reported a subnanometer-level control over
the microsphere radius through chemical etching. Other
tuning techniques, such as changing the refractive index of
the environment, may also be used.

In summary, we have demonstrated that a high-Q non-
linear microsphere can achieve ultralow threshold para-
metric oscillation and symmetry-enforced quantum
entanglement. It is also realistic to fabricate nonlinear
microspheres with Q factors in the range of 106 and satisfy
other constraints imposed by current technologies.
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