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A high-precision numerical calculation is reported for the self-energy correction to the hyperfine
splitting and to the bound-electron g factor in hydrogenlike ions with low nuclear charge numbers. The
binding nuclear Coulomb field is treated to all orders, and the nonperturbative remainder beyond the
known Z�-expansion coefficients is determined. For the 3He� ion, the nonperturbative remainder yields a
contribution of�450 Hz to the normalized difference of the 1S and 2S hyperfine-structure intervals, to be
compared with the experimental uncertainty of 71 Hz and with the theoretical error of 50 Hz due to other
contributions. In the case of the g factor, the calculation provides the most stringent test of equivalence of
the perturbative and nonperturbative approaches reported so far in the bound-state QED calculations.
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The hyperfine structure (hfs) of the ground state of
hydrogen is experimentally known with a relative accuracy
of 1� 10�12 [1], this measurement having for a long time
been among the most precise ones in physics. One of the
remarkable features of the hfs is an important role of the
binding effects in its theoretical description. For the self-
energy (SE) correction to the hfs, the binding effects
change the sign of the correction already for a nuclear
charge number Z � 8 and make the expansion in the
binding-strength parameter Z� completely inadequate for
high values of Z (here, � is the fine-structure constant).
Large coefficients of the Z� expansion and the high accu-
racy of experimental results call for an all-order (in Z�)
approach in the theoretical description of the hfs even for
systems as light as hydrogen.

The high-precision all-order calculation of radiative
corrections for hydrogen is a notoriously difficult problem.
This point can be illustrated by considering the SE correc-
tion to the Lamb shift. Its accurate evaluation to all orders
in Z� was first accomplished by Mohr in 1974 [2] for
Z � 10, while an analogous calculation for Z � 1 was not
realized until two decades later [3].

All-order calculations of the SE correction to the hfs
started in late 1990s [4–6]. The first attempt at a numerical
evaluation for hydrogen was made at the same time in
Ref. [7]. Because of insufficient numerical accuracy at Z �
1 in that work, the goal was reached in an indirect way: the
known terms of the Z� expansion were subtracted from the
all-order numerical results for Z � 5, and the higher-order
remainder thus inferred was extrapolated towards Z � 1.
The result obtained was used as an important theoretical
input for the determination of the muon mass from the
muonium hfs measurements [8].

The accuracy of the numerical evaluation of the SE
correction to the hfs was improved by several orders of
magnitude during the past years [9,10]. However, the
precision obtained was still insufficient for a direct deter-
mination of the higher-order SE remainder at Z � 1, and
an extrapolation procedure was again employed. The stud-
ies [9,10] provided a remainder value for the normalized
difference of the 1S and 2S hfs intervals, �2 � 8�E2S �
�E1S [11], in 3He� and demonstrated a 2� deviation of the
theoretical prediction from the experimental result [12,13].
The accuracy of the extrapolation procedure of Refs. [9,10]
has recently become a subject of some concern. In particu-
lar, there is an opinion [14] that the error of the extrapola-
tion is 4 times larger than given in Refs. [9,10], which
would bring theory and experiment back into agreement.

The main goal of the present investigation is to perform
the first direct, high-precision theoretical determination of
the higher-order remainder of the SE correction to the hfs
of the 1S and 2S states of light hydrogenlike ions. In
addition, we carry out a related study of the SE correction
in the presence of an external homogeneous magnetic field,
i.e., the SE correction to the g factor of an electron bound
by a spinless nucleus.

High-precision experimental investigations for the
bound-electron g factor have a shorter history than those
for the hfs but are not less important. A relative accuracy of
5� 10�10 was reached in recent microwave measurements
in hydrogenlike carbon and oxygen [15,16], thus providing
a new tool for the determination of the electron mass [17].
A recent proposal [18] to employ laser spectroscopic tech-
niques in these measurements opens perspectives for im-
proving the experimental accuracy (particularly, for the
helium ion) up to the level of 10�12.
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Already at the present level of experimental accuracy,
the theoretical description of the bound-electron g factor
has to be performed to all orders in Z�. The numerical
precision often becomes a matter of crucial importance in
such calculations. So, an increase of the numerical accu-
racy for the SE correction to the g factor by an order of
magnitude achieved in Ref. [19] as compared to the pre-
vious evaluations [6,20,21] resulted in an improvement in
the electron mass value. In order to match the 10�12 level
of accuracy anticipated in future experiments on the he-
lium ion, the precision of numerical calculations of the SE
correction should be enhanced by several orders of magni-
tude. This task will be accomplished in the present work.

The SE correction in the presence of an external (mag-
netic) potential Vmagn is graphically represented by two
topologically nonequivalent diagrams in Fig. 1. Formal
expressions for them can be obtained by considering a
first-order perturbation of the SE correction to the Lamb
shift by Vmagn. Perturbations of the reference-state wave
function, the binding energy, and the electron propagator
give rise to the irreducible, the reducible, and the vertex
contributions, respectively. General formulas for these
contributions are known and can be found in our previous
study [10]; for a detailed analysis we direct the reader to
Ref. [22]. The irreducible part reads

 �Eir � haj��"a�j�ai � h�aj��"a�jai; (1)

where ��"a� is the SE operator defined so that its diagonal
matrix element haj��"a�jai yields the one-loop SE correc-
tion to the Lamb shift [2], and j�ai is the first-order
perturbation of the reference-state wave function jai by
Vmagn. The reducible part is given by

 �Ered � hajVmagnjai
�
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where �� � �1;�� are the Dirac matrices, u � 1� i0, and
D�� is the photon propagator.

The calculation of the irreducible part is similar to the
evaluation of the diagonal matrix element of the SE opera-
tor. It is performed here by a generalization of the approach
of Ref. [3], with the use of the closed form analytical
representation for the perturbed wave function j�ai [23].
The evaluation of the reducible and vertex parts is more
difficult. It is carried out after splitting them into several
parts,

 �Ered � �E�a�red ��E�0�red ��E�1��red ; (4)

 �Ever � �E�a�ver � �E�0�ver � �E�1�ver � �E�2��ver ; (5)

where the upper index �a� labels the contributions induced
by the reference-state part of the electron propagators and
the other indices specify the total number of interactions
with the binding field in the electron propagators [the index
�i�� labels the terms generated by � i such interactions].
The reference-state contributions �E�a�red and �E�a�ver are
separately infrared divergent. The divergences disappear
when the contributions are regularized in the same way and
evaluated together. The zero-potential parts �E�0�red and
�E�0�ver are separately ultraviolet divergent. They are cova-
riantly regularized by working in an extended number of
dimensions and calculated in momentum space. The re-
mainder of the reducible part �E�1��red contains at least one
interaction with the binding field in the electron propaga-
tors and is finite. In its evaluation, advantage was taken of a
generalization of the numerical procedures originally de-
veloped in Ref. [3].

The remaining vertex contributions �E�1�ver and �E�2��ver

contain three electron propagators and represent the most
difficult part of the calculation. The key to the success was
to isolate the one-potential vertex contribution �E�1�ver and
to calculate it without any partial-wave expansion in mo-
mentum space. For the SE correction to the g factor, such a
calculation has been carried out in Ref. [19], employing the
fortunate fact that in momentum space, the interaction with
the homogeneous magnetic field is expressed in terms of
the (gradient of the) �-function. This is not the case for the
hfs, and the calculation of this contribution is much more
difficult. The general expression for �E�1�ver reads

 

�E�1�ver � �8�i�
Z dpdp0dp00
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where p000 � p� p0 � p00, p0 � p00 � "a, p000 � p0000 � 0,
S�p� � 1=�p6 �m� is the free electron propagator, and VC

FIG. 1. The electron self-energy in the presence of a magnetic
field. The double line indicates the bound electron and the wave
line with a cross is the magnetic field.
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is the Coulomb potential. Effectively, �E�1�ver is a two-loop
contribution because two momentum integrations (over
d4k and dp00) need to be performed analytically. They are
carried out after joining denominators by introducing 4
auxiliary Feynman parameters. Next, we integrate over
all angular variables except p � p0, which leaves 7 integra-
tions (3 over the kinematic variables and 4 over the auxil-
iary parameters) to be carried out numerically. The
numerical evaluation is rather time-consuming (about a
month of processor time for each value of Z) but the crucial
point is that it does not involve any partial-wave
summations.

The remaining vertex contribution �E�2��ver contains
bound-electron propagators, and so the partial-wave ex-
pansion in its evaluation is unavoidable. However, the
convergence of this expansion turns out to be very good,
provided that the integrations over all radial variables are
first carried out. For instance, at Z � 1, the sum of only the
first two partial waves for the hfs yields a result with a
relative accuracy of 10�5. The good convergence is due to
the separation of the one-potential contribution �E�1�ver in-
troduced in this work. About 120 partial waves included in
the actual calculation and the extended-precision arith-
metics employed allowed us to control the calculation to
a level of 10�9.

The results for the SE correction to the hfs can be
conveniently represented as
 

�En � EF�n�
�
�
	a00 � �Z��a10 � �Z��2�L2a22 � La21

� a20� � �Z��3La31 � �Z��3Fn�Z��
; (7)

where EF�n� is the nonrelativistic hfs value, L �
ln	�Z���2
, and aij are coefficients of the Z�-expansion
known today: a00�nS� � 1=2, a10�nS� � �8:032 590 03,
a22�nS� � �2=3, a21�1S� � �1:334 504, a21�2S� �
0:317 104, a20�1S� � 17:122 339, a20�2S� � 11:901 105,
a31�nS� � �13:307 416; see recent works [11,24], and
references therein for earlier studies. Fn is the higher-order
remainder, which should addressed in a numerical all-order
approach.

The results of our numerical calculation of the SE
correction to the hfs of the 1S and 2S states of light
hydrogenlike ions with Z � 5 are presented in Table I.
The fine-structure constant of ��1 � 137:035 999 11 [8]
was employed in the calculation. Since the current uncer-
tainty of � (3 ppb) does not influence the numerical
accuracy of the higher-order remainders, � is assumed to
attain exactly the value indicated. Good agreement is ob-
served with the extrapolated values of the higher-order
remainder obtained previously [7,9,10] and with the
Z�-expansion result of Ref. [25], but their accuracy is
increased by several orders of magnitude.

Our calculation removes a significant source of uncer-
tainty in the theoretical predictions for the normalized
difference of the 1S and 2S hfs intervals in hydrogen and

helium-3 ion, �2 � 8�E2 � �E1. For 3He�, the SE re-
mainder determined in this work amounts to �0:450 kHz.
Combining this result with other theoretical con-
tributions to �2 described in detail in Refs. [11,26,27],
we obtain the total theoretical value �2�

3He��theo �
�1190:135�50� kHz, to be compared with the experimen-
tal result �2�

3He��exp � �1189:979�71� kHz [12,13]. Our
calculation of the SE remainder improves the accuracy of
the theoretical prediction by a factor of 3, as compared
with Ref. [26]. For hydrogen, the theoretical and experi-
mental results read �2�H�theo � 48:9541�23� kHz and
�2�H�exp � 49:13�13� kHz [1,28], correspondingly.

For the g factor, the results of our numerical evaluation
can be parameterized as

 �gn �
�
�
	1� �Z��2b20 � �Z��4�Lb41 � b40�

� �Z��5Hn�Z��
; (8)

where bij are known coefficients of the Z� ex-
pansion: b20�nS� �

1
6n
�2, b41�nS� �

32
9 n
�3, b40�1S� �

�10:236 524, b40�2S� � �1:338464; see Ref. [29] and
references therein. Hn is the remainder incorporating all
higher-order contributions. It is remarkable that for the g
factor, the higher-order remainder enters in the relative
order �Z��5 rather than in the relative order �Z��3, as in
the case of the hfs. This means that cancellations in ex-
tracting the remainder from numerical results for Z � 1 are
by 4 orders of magnitude larger for the g factor than for the
hfs.

The results of our numerical calculation of the SE
correction for the 1S bound-electron g factor are presented
in Table II. For hydrogen, they are consistent with values
reported previously [19,21] but are by 2 orders of magni-

TABLE I. SE correction to the hfs of nS states of hydrogenlike
ions. �En � �En=	��=��EF�n�
 and Fn is defined in Eq. (7).

n Z �En Fn Ref.

1 1 0.438 101 842 (2) �13:8308 �42�
�13:8 �3� [10]
�15:9 �1:6� [25]
�12 �2� [7]

2 0.373 467 603 (3) �14:1159 �10�
3 0.307 583 837 (4) �14:4120 �4�
4 0.241 005 729 (6) �14:6962 �2�
5 0.174 026 210 (7) �14:9673 �2�

2 1 0.438 692 275 (3) �6:1205 �84�
�6:2 �9� [10]
�7:8 �1:4� [9]

2 0.375 352 040 (4) �6:9129 �11�
�6:9 �4� [10]
�8:2 �9� [9]

3 0.311 203 192 (5) �7:5833 �5�
4 0.246 665 422 (7) �8:1698 �3�
5 0.181 938 683 (10) �8:7069 �2�
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tude more accurate. At the same time, all ten digits of our
numerical all-order result for Z � 1 coincide with the
value obtained within the Z�-expansion. The fact of this
coincidence can be considered as one of the most stringent
tests of consistency of the two main theoretical approaches
presently developed in bound-state QED. Similar agree-
ment between the Z�-expansion and the all-order ap-
proach was observed for the 2S state; the corresponding
results will be presented elsewhere.

The accuracy of the direct numerical determination of
the g-factor remainderH1 for Z � 1 and 2 can be increased
by extrapolating our results obtained for the higher-Z
region. We employ the extrapolation procedure described
in Refs. [9,10] and the numerical data for the remainder H1

for Z as high as 20 in order to obtain the improved results
listed in Table II under the label H1�extr:�.

To conclude, we have performed high-precision all-
order calculations for the SE correction to the hfs and to
the bound-electron g factor in light hydrogenlike systems,
improving the numerical accuracy by several orders of
magnitude as compared to the previous evaluations.
Accurate nonperturbative results have been obtained for
the higher-order SE remainder for the hfs. We remove an
important source of uncertainty in theoretical predictions
for the normalized difference of the 1S and 2S hfs intervals
in hydrogen and the helium-3 ion and increase the theo-
retical accuracy by a factor of 3.
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