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A detailed analysis of the effect of short-range and tensor correlations on one- and two-nucleon
momentum distributions of medium-weight nuclei (12 = A = 40) is carried out. Although our Letter is
primarily aimed at understanding the role of the tensor force on nucleon momentum distributions of
medium-weight nuclei, the possible relevance of our results for the interpretation of (e, ¢’N) and (e, ¢/2N)
processes at high 02, aimed at investigating nucleon-nucleon correlations, is discussed.
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Obtaining information on short-range nucleon-nucleon
correlations (SRC) in nuclei is a primary goal of modern
nuclear physics. The interest in SRC stems not only from
the necessity to firmly establish the limits of validity of the
standard model of nuclei, but also from the strong impact
that the knowledge of SRC in ordinary nuclei would have
on other fields of physics, like, e.g., nuclear physics of stars
and astrophysics. In fact, when the distance between two
nucleons is about 1 fm, the local density of such a pair is
comparable to the density expected in neutron stars; short-
range correlated NN pairs represent therefore a form of
cold dense nuclear matter that can be approached and
studied in the laboratory. Such a study, in particular, the
isospin dependence of SRC, would help to answer several
crucial questions about the formation and the structure of
neutron stars [1]. Recently, evidence of SRC has been
provided by new experimental data on lepton and hadron
scattering off nuclei at high-momentum transfer (Q*> =
1 GeV?). The claimed evidence of SRC in these experi-
ments resulted from the following. (i) The observation of a
scaling behavior of the ratios of inclusive A(e, ¢')X cross
sections on heavy nuclei to those of the deuteron [2], for
values of the Bjorken scaling variable 1.4 < xz; < 2, and
to those of *He [3], for 2 < xz < 3; this has been inter-
preted as evidence that the electron probes two- and three-
nucleon correlations in nuclei similar to the ones in the
two- and three-body systems; (ii) the observation of np
pairs emitted back-to-back in the process '>?C(p, ppn)X
[4], which provided direct measurement of correlated np
pairs, with a yield consistent with the A(e, e')X results; a
recent analysis of this experiment [5], based upon the two-
nucleon correlation (2NC) model [6—8], demonstrates the
dominance of pn SRCs over pp SRCs and provides the
first experimental evidence of the isospin dependence of
NN SRCs; (iii) the direct observation of pp correlated
pairs in a recent JLab experiment [9], where a simulta-
neous measurement of the triple, '>C(e, ¢/pp)X, and
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double, '2C(e, e'p)X, coincidence reactions revealed that
the probability ratio of '>C(e, e/pp)X to 2C(e, e'p)X
events, for proton missing momenta above 300 MeV/c,
is (9.5 * 2)%. This experiment confirms the previous find-
ings of [4] that the center-of-mass motion of a correlated
pair has a behavior as predicted in [8]. Experimental work
is planned [10], aimed at measuring the ratios
“He(e, ¢’ pp)/*Hele, ¢'p), *Hel(e, ¢’ pn)/*He(e, ¢'p), and
“He(e, ¢’'pn)/*He(e, ¢’pp) in the missing momentum
range 500-875 MeV/c, in order to investigate the hard
core region. The experimental results cited above stimu-
lated new theoretical work in the field of SRCs. From one
side, new theoretical approaches to the treatment of final
state interactions (FSI) in (e, e’ p) and (e, ¢’ pN) processes,
based upon improved eikonal approximations, have been
developed [11] and applied [11,12] to the interpretation of
the (e, e'p) and (e, ¢’ pp) off few-nucleon systems. From
the other side, the role of the tensor force in producing a
substantial difference between pn and pp two-nucleon
momentum distributions in few-body systems and light
nuclei (A = 8) has been demonstrated [13] using state-
of-the-art realistic nuclear wave functions obtained within
the variational Monte Carlo (VMC) approach [14]. In this
Letter the results of calculations of the one- and two-
nucleon momentum distributions of medium-weight nuclei
(12 = A = 40) will be presented (for preliminary results
see [15]). Our approach is based upon a linked and number
conserving cluster expansion [16] with correlated wave
functions of the type ¥ = F®, where F = ]_[fij is a
correlation operator generated by realistic interactions
and ® is a mean field (MF) wave function. Within this
approach, the nondiagonal one-body density matrix
(OBDM) at first order of the expansion reads as follows:

PO, r) = pheri, ) + p () + oy, ),

(D
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where pf\}[)F(r, r') =Y .erear)e,(r') is the MF OBDM,
and p(HI,) and p(Sl) are the hole (H) and spectator () corre-
lation contributions; the former takes into account the
contributions arising from the correlation between the
struck proton and a nucleon of the spectator system (A —
1), whereas the latter represents the contribution arising
from the statistical coupling of the struck proton with a
correlated pair in the spectator system (A — 1); the hole
contribution affects the high-momentum part of the mo-
mentum distributions, whereas the spectator one mainly
renormalizes the MF momentum distributions. The non-
diagonal two-body density matrix (TBDM) can be written
as follows:

2 2
pO(ry, 1y v, rh) = (e, ros e, 1h) + pS) ey, rosr), 1))
2 2
+ P9 et 1) 4 p) ey, rsr, 1),
()

where pﬁ)F is the MF TBDM and the other terms represent
the correlation contributions, with the subscripts 2b, 3b,
and 4b denoting the number of ‘“bodies’ (nucleons) in-
volved in the given contribution. It should be stressed that
our number conserving approach rigorously satisfies the
sequential conditions that link the various density matrices.
In Fig. 1, for the purpose of illustration, a particular class of
hole and spectator Mayer diagrams considered in our
approach are shown; the total number of correlation dia-
grams we have considered for the evaluation of p(r,, r!)
and p®(ry, ry;r), ry) was 5 and 20, respectively. In the
case of central correlations [and harmonic oscillator (HO)
MF wave functions] analytic expressions of the diagonal
TBDM are given in Ref. [17]; when noncentral correlations
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FIG. 1. Some (out of a total of 25) of the Mayer diagrams
considered in the calculation of the diagonal (a),(b) and non-
diagonal (c),(d) OBDM, Eq. (1), and TBDM, Egq. (2). Here, open
dots denote the “active” particles, full dots labeled by an index
“i” represent an integration over the coordinates of particle i, an
oriented line originating and ending in the same dot denotes the
mean field diagonal OBDM p,(i), whereas an oriented line
joining two different dots denotes the nondiagonal OBDM,
p,(i, j); the correlation operator My = f,-jfl-rj — 1) is repre-
sented by dashed lines. Note that diagrams (a) and (b) are
obtained from diagrams (c) and (d) by setting 1 =1/, 2 = 2/,
whereas diagrams (a) are obtained from diagrams (b) by inte-
grating over particle “2”. Upper (lower) diagrams belong to the
class of hole (particle) diagrams.
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are considered, as in the present case, no analytic expres-
sions can be given even using HO wave functions. The one-
nucleon momentum distribution (ONMD) is the Fourier
transform of the OBDM [Eq. (1)], viz.,

1 ik (e —F
n(k) = W [drldr’le ihe(ri=r) p (D r), 3
whereas the Fourier transform of the TBDM [Eq. (2)]
yields the two-nucleon momentum distribution (TNMD),
which can be written in terms of relative, k., and center-
of-mass (c.m.), K, , momenta, as follows:

n(ke, Kem) = / drdRdr'dR' ¢Kem R=R) gikea-(r=r)

2m)s
X p®(r, R;r', R). “4)

The relative, n.(k,), and c.m., n¢, (K., ), momentum
distributions can be obtained from Eq. (4) by integrating
over K, and k., respectively. In numerical calculations
we have considered the nuclei “He, 12C, 10, and “°Ca; the
MEF wave functions were chosen in the Saxon-Woods form,
with parameters fixed by minimizing the ground state
energy using the AV8' interaction [18]; this means that
proper combinations of central, tensor, spin, and isospin
correlations have been considered. The results for the
ONMD are presented in Fig. 2 where, for 160, the effects
of noncentral correlations and a comparison with higher
order calculations, e.g., the VMC [19] and the Fermi
hypernetted chain (FHNC) [20] approaches, are shown
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FIG. 2. Top: the ONMD [Eq. (3)] for 12C, 10, and “°Ca (AV§'
interaction [18]). Bottom: the MF and central correlation con-
tributions to the momentum distribution of '60; the difference
between the solid and dashed curves yields a measure of non-
central (mainly tensor) correlations. The results obtained within
the cluster expansion (solid line) are compared with the VMC,
Ref. [19] (full dots), and the FHNC, Ref. [20] (open stars). The
normalization of the momentum distributions is [ dkn(k) = A
[note that in Figs. 11 and 12 of Ref. [16] n(k) is normalized to 1].
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FIG. 3. Top: the relative TNMD [Eq. (4)] of 12¢ 160, and “°Ca
integrated over K., (AV8' interaction [18]). Bottom: the MF
and central correlation contributions to the TNMD of '°O. The
normalization is [ dk.n(ky) = (2m)°A(A — 1)/2.

(the effect of higher order contributions within the linked
cluster expansion has been shown to be a very tiny one
[16]). The TNMD [Eq. (4)] integrated over K, are pre-
sented in Fig. 3 where, for '°0, the MF contribution and the
central and full (central plus noncentral) correlation con-
tributions are shown. The TNMD corresponding to K. ,, =
0 (back-to-back nucleons) are presented in Fig. 4 where,
for 10, the isospin separation of the total TNMD is
illustrated by exhibiting the pp and pn pair contributions.
In the same figure we also show the ratio R,y =
npN(krel’ Kc.m. = 0)/n;eNmral(krelr Kc.m. = 0) where N =
(p, n); here n N includes both central and noncentral cor-
relations, whereas nj,‘“‘Nmml includes central correlations
only. It can be seen that in the region dominated by (tensor)
correlations, the pn and pp ratios differ by about an order
of magnitude. Eventually, we have evaluated the quantity

P _ .[Z dkrelkgelnpN(krel’ O)
PN dkeak2 [ (Kt O) + 72 gty 0)]

representing the percentage probability of back-to-back
pN pairs. We have considered the integration limits (in
units of Fermis): [a, b] = [0, o] and [a, b] = [1.5, 3.0], the
latter interval covering the region of high-momentum com-
ponents originating from correlations. The calculated val-
ues of P,y are shown in Table L. It can be seen that, in
agreement with the result of Ref. [13], when the integration
runs over the whole range of k., P,y is proportional to the
percentage of pN pairs, whereas the integration over the
correlation region leads to a percentage of pn pairs much
larger than that of the pp pair, which is a clear conse-
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FIG. 4. Top: the relative TNMD [Eq. (4)] of 12C, 1°0, and 4°Ca
calculated in correspondence of K., = 0 (back-to-back nucle-
ons). Bottom: the pn and pp relative TNMD in '°O for back-to-
back nucleons [the total TNMD is given by n(k,, K., = 0) =
1y (kyety Ken = 0) + 21, (kyep, Koy = 0)]. The inset shows the
ratio RpN = npN(krelr K&m. = O)/n;ej\‘}[ra] (krel’ Kc.m. = O)

quence of the effects of the tensor force acting between a
proton and a neutron. The quantity P,y of Eq. (5) refers
strictly to back-to-back nucleons (K., = 0). In Ref. [9], a
simultaneous analysis of the >C(e, e/p) and '>C(e, e'pp)
reactions at Q> = 2 (GeV/c)?, xz = 1.2, led to the con-
clusion that in the range of missing momentum
1.5fm™ ! < p, =3 fm!, (9.5%2)% of the events ob-
served in the A(e, e'p)X process includes, besides the
struck proton, a second backward emitted nucleon corre-
lated partner of the struck nucleon with the c.m. motion of
correlated pair described by a s-wave function with width
as predicted in [8]. Therefore, we have calculated P,y for
different values of K., = 0.5, 1, and 1.5 fm~!, finding
that the results listed in Table I change by only a few
percent. This can be understood within the 2NC model,
which assumes, for low values of K, and high values of

TABLE I. The pp and pn percentage probability [Eq. (5)]
evaluated in the momentum range shown in square brackets.
P, (%) Py, (%) Py (%) Py (%)
A [0, o0] [0, o] [1.5,3.0] [1.5,3.0]
4 19.7 81.3 2.9 97.1
12 30.6 69.4 13.3 86.7
16 29.5 70.5 10.8 89.2
40 31.0 69.0 24.0 76.0
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FIG. 5 (color online). Comparison of the many-body TNMD
of this Letter [Eq. (4)] with the factorized form of Ref. [8]
n(krclr KcAm) = CAnD(krel)nCS(KcAm) (See teXt); the values of
K. corresponding to the various curves are K., = 0 fm™!
(squares), 0.5 fm~! (full triangles), 1 fm~! (open dots).

k.1, a factorization of the TNMD into the relative and c.m.
momentum distributions [6—8]. As a matter of fact, as
shown in Fig. 5, our many-body 7,,(k., K.y ) in the
region 1.5 <k <=20fm™ ! and 0 = K,, < 1.0 fm™!
fairly well factorizes as predicted in Refs. [6—8], into
non € (kret, Kem) = Canp(kie)ne.m (Kem,), np being  the

pn
deuteron = momentum  distribution, and n., =
(2mwo?) 732 exp(—K2,, /20?) the c.m. momentum distri-

bution, with o = 0.139 GeV/c¢ in agreement with the
prediction of [8], confirmed by [4,5,9]. This is stringent
evidence of the general validity of the 2NC model. In order
to put this result on a more firm basis, one should estimate
the P,y probabilities starting, along the line of Ref. [5],
from a calculation of the (e, ¢’p) and (e, ' pp) cross sec-
tions using one-body and two-body spectral functions tak-
ing FSI into account. Work is in progress and will be
reported elsewhere. Concerning the dependence of Py
upon the NN interaction model, we have estimated Py
for *He using various types of interactions and found, as in
Ref. [13], that interactions having the same tensor-to-
central force ratio (e.g., AV6/, AV8', AV18) affect very
little the high-momentum part of the ONMD and TNMD
and, consequently, the correlated values of P .

To sum up, the main results we have obtained can be
summarized as follows: (i) the high-momentum part of
both the one- and two-nucleon momentum distributions
in medium-weight nuclei is dominated by tensor correla-
tions, which can reliably be described within the linked
cluster expansion we have developed; (ii) in agreement
with the results for light nuclei [13], at relative momenta
ke = 1.5 fm™!, the pn TNMD is much larger than the pp
TNMD, whereas at small values of k,,; the ratio of pn and
pp TNMD is proportional to the ratio of the number of pn
to pp pairs; (iii) in the range 1.5 fm™!' < k,, = 3 fm™ !,
thanks to the effect of the tensor force, the relative proba-
bility of having correlated pp and pn pairs in medium-

weight nuclei is roughly P,, = 10% and P,, ~90%, in
apparent agreement with the findings of Refs. [4,5,9]:
(iv) in the same region of relative momentum, calculations
performed only with central correlations produce pp and
pn probabilities proportional to the number of the corre-
sponding pairs, i.e., P,, ~30% and P, =70%; (v) in
agreement with 2NC model predictions, the TNMD
[Eq. (4)], calculated within our many-body approach ex-
hibits, at large values of k,; and low values of K, , a clear
factorized behavior.
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