
Rapid Measurement of Quantum Systems Using Feedback Control

Joshua Combes,1 Howard M. Wiseman,1 and Kurt Jacobs2,3

1Centre for Quantum Computer Technology, Centre for Quantum Dynamics, Griffith University, Nathan 4111, Australia
2Department of Physics, University of Massachusetts at Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, USA

3Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University,
Baton Rouge, Louisiana 70803, USA

(Received 21 December 2007; published 22 April 2008)

We introduce a feedback control algorithm that increases the speed at which a measurement extracts
information about a d-dimensional system by a factor that scales as d2. Generalizing this algorithm, we
apply it to a register of n qubits and show an improvement of O�n�. We derive analytical bounds on the
benefit provided by the feedback and perform simulations that confirm that this speedup is achieved.

DOI: 10.1103/PhysRevLett.100.160503 PACS numbers: 03.67.Lx, 02.30.Yy, 02.50.�r, 89.70.�a

Recently it has been shown that it is possible to increase
the speed at which a measurement purifies the state of a
quantum system by using real-time feedback control as the
measurement proceeds [1–9]. Specifically, by using feed-
back to keep the state of the system diagonal in a basis that
is unbiased with respect to the measured observable, one
can make the system purity increase deterministically at a
rate faster than the increase of the average purity by
measurement alone [1,2]. Since this protocol requires an
unbiased basis, it exploits a purely quantum mechanical
effect. However, as a consequence this quantum feedback
protocol prevents the observer from obtaining full infor-
mation about the initial preparation of the system, and is
therefore not appropriate for use in applications such as
communication channels [10]. It is for this reason that the
effect of the protocol is termed rapid purification and not
rapid measurement.

Here we present a new protocol that can be applied to
both quantum and classical systems, and that, in contrast to
quantum rapid purification, increases the rate at which the
observer gains information about the initial preparation, as
well as the rate at which the state is purified. This protocol
therefore achieves not merely rapid purification but also
rapid measurement and can be used in communication
channels, state stabilization, readout, and error correction
in quantum computers. It is also distinct from the rapid
state-discrimination protocol introduced recently in [11],
which is only applicable to nonorthogonal states and thus
to quantum systems. Our protocol can be applied to all
systems with dimension d > 2. Assuming the measured
observable scales with d, we show that our protocol in-
creases the speed of a measurement by a factor O�d2� over
an unaided measurement on a qubit. This is in contrast to
the O�d� speedup achieved by previous protocols [2]. We
generalize our protocol for a register of n qubits, each
being measured independently and continuously, and ob-
tain an improvement O�n�.

The evolution of the state � of a system subject to a
continuous measurement of an observable X is given by the
stochastic master equation (SME) [12,13]

 d� � 2�dtD�X���
������
2�

p
dWH �X��; (1)

where D�A�� � A�Ay � 1
2 �A

yA�� �AyA�, and
H �A�� � A�� �Ay � Tr��Ay � A����. The measure-
ment strength � determines the rate at which information
is extracted, and thus the rate at which the system is
projected onto a single eigenstate of X [14]. We denote
the continuous measurement record obtained by the ob-
server as r�t�, and dr �

������
4�
p
hXidt� dW. We assume that

the measurement strength is much smaller than the strength
of the Hamiltonians that can be controlled by feedback, so
that applied unitaries can be treated as instantaneous.

For a continuous measurement, without feedback, there
must be no degenerate eigenvalues in the observable in
order to guarantee purification [14]. In what follows we
take X to have equispaced, and hence nondegenerate,
eigenvalues (although we note that, with feedback, in order
to purify an arbitrary initial state, the observable need
possess only two nondegenerate eigenvalues). This is a
fairly canonical choice, as it applies to observables such
as the components of angular momentum and the energy of
a harmonic oscillator. This means that, since the trans-
formation X ! X� �I for real � leaves the SME invari-
ant, we can always take the d eigenvalues fxg of X to be
f0; 1; . . . ; d� 1g, with corresponding eigenstates jxi. We
will label the eigenvalues of � as �j in decreasing order:
�0 � �1 � 	 	 	 � �d�1. We will assume that � is initially
completely mixed, and that any feedback merely acts so as
to swap states in the eigenbasis fjxig of X. In this case �
will remain diagonal in this eigenbasis, and we will denote
the eigenstate of � with eigenvalue �j as jxji.

The rapid-measurement algorithms we present are based
on the following two observations: (i) The rate at which a
measurement distinguishes between two eigenstates, jxi
and jx0i, is proportional to ��x� x0�2. (ii) As the measure-
ment proceeds, �0 approaches unity. With no feedback, the
above facts mean that at long times the next-largest eigen-
value �1 will be associated with adjacent eigenvalues of X:
x1 � x0 
 1 [2]. However, fact (i) means that if we apply a
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unitary operation to the state matrix so as to rearrange the
eigenbasis, we can make jx1 � x0j as large as d� 1, lead-
ing to a �d� 1�2 increase in the rate at which we distin-
guish between the most- and next-most-likely state. This is
the basic idea behind our rapid-measurement algorithms.

Previous analyses of rapid purification have considered
both the impurity L � 1�

P
j�

2
j [1,2] and the infidelity

� � 1� �0 [3]. In the long-time limit these are propor-
tional (L� 2� 1) and for the most part we use � rather
than L in this Letter. As well as considering the time �
required for the average infidelity h����i to reach a speci-
fied level �, one can also consider the average time hTi for a
system to attain ��T� � � [3]. In many circumstances the
latter is the more useful quantity [3]. It is also much easier
to calculate numerically. The reason is that the time T at
which ��T� � � has well-behaved statistics [3], in contrast
with ��t� which has extremely long tails at relatively large
values of �. That is, the average h�i is greatly influenced
by the rare cases that are slow to purify. Because of this
there is substantial disagreement between � and hTi for a
qubit. It was shown in Ref. [3], however, that good agree-
ment is found between hTi and �0, defined as the time
required for hln���0�i to reach a specified level ln�. This
is because taking the logarithm de-emphasizes the tails,
and indeed for a qubit ln� has a near-normal distribution
[3].

In this Letter most of our calculations concern the
average time hTi to obtain a measurement fidelity ��T� �
� 1. In addition to the reasons given above, this is
because we can obtain the scaling of hTi from analytical
bounds for the long-time behavior of hln�i. While we are
not able to obtain bounds on h�i or hLi, we include
numerical simulations of hLi for small systems. As we
will see, these simulations suggest that all measures show
similar increases in measurement rate under our algorithm.

We first obtain analytical expressions for hln�i for the
case of no feedback (NFB). In the limit of interest, where
one eigenvalue is very close to 1, we can use the fact that
ln�� Tr�ln�1� ���. The latter expression has the advan-
tage that one can obtain an exact integral for hTr�ln�1�
���i, using linear quantum trajectory theory [13,15] as in
Ref. [2]. For t� ��1 this integral gives

 hln�iNFB ��4�t: (2)

From this relation and the argument given above (discussed
in more detail in Ref. [3]) we expect that the mean time to
attain � � � is, for ln���1� � 1,

 hTiNFB � �1=4�� ln���1�: (3)

We now turn to our feedback algorithm. As explained
above, the basic idea is to make the eigenvalues of the
measured quantity X as different as possible for the eigen-
states of � with the largest and second-largest eigenvalues.
Thus we take the action of the feedback unitaries to be such
as to make x0 the smallest and x1 the largest eigenvalue of

X. That is, x0 � 0 and x1 � d� 1. Then from the SME (1)
we calculate

 dhln�i � �4�dt
hXi2�1� ��2

�2 ; (4)

where hXi � Tr�X��. For a given �, the measurement rate
is maximized by using the feedback to maximize hXi2. This
is achieved by using feedback to order the eigenvalues of �
as �0, �d�1, �d�2; . . . ; �2, �1. Here the corresponding
eigenstates are X eigenstates j0i; j1i; j2i; . . . ; jd� 2i; jd�
1i. We will call this L ordering [16]. The feedback algo-
rithm that maintains this ordering is locally optimal (LO)
in time in the sense that at any point in time L ordering will
maximize the expected decrease in the log infidelity sub-
sequent to a weak measurement of infinitesimal duration
dt. It is worth noting that the feedback, applying a condi-
tional unitary to the system, is equivalent to changing the
measured observable at each time step.

We can derive bounds on the performance of LO feed-
back in the long-time limit from bounds on

 hXi �
Xd�1

j�1

�j�d� j�; (5)

with the constraints
Pd�1
j�1 �j � � and �j � �k � 0 for

j < k. It is easy to prove that ��d=2� � hXi � ��d� 1�.
Thus in the long-time limit where � 1 we have

 dhln�iLO � �4�dtSLO; (6)

 �d=2�2 � SLO � �d� 1�2: (7)

Using this to infer approximate bounds on hTiLO, as ex-
plained above, we see from Eq. (6) that SLO is precisely the
speed-up factor that this feedback algorithm gives over the
measurement without feedback:

 hTiLO � hTiNFB=SLO: (8)

The above argument thus predicts that the achievable
speedup in hTi increases quadratically in the size of the
system. This scaling, which we confirm with numerical
simulations below, is the main result of this Letter.

We expect the true speed-up factor SLO to be closer to
the lower bound in Eq. (7), for the following reason. For
� 1, the observer is almost certain that the system is in
state j0i, but it could be in one of the states j1i; . . . ; jd� 1i.
For some state jxi with x > 0, the larger x, the better the
measurement is at determining that it is not in that state.
Hence the LO feedback ensures that the measurement will
tend to reduce �j�1 more than �j, 8 j > 0. Since �j�1 >
�j, the measurement plus LO feedback will tend to equal-
ize the �j for j > 0. The lower bound is attained when they
are all equal.

We now compare the above calculation to numerics. We
calculated hTiNFB and hTiLO by stochastic simulations. The
former was found to agree with the theory above Eq. (3). In
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both cases, we calculated the small-� asymptotic speedup
by extrapolating the numerical values of hTi. In Fig. 1 we
plot the speed-up factor from Eq. (8) as a function of �, for
d � 3; 4; 5, also with the asymptotic values. This shows
that most of the speedup is achieved for � � 10�4,
although the gap appears to grow with d. In Fig. 2 we
plot the asymptotic speedup as a function of d. As ex-
pected, it fits within the bounds of Eq. (7), and confirms a
very nearly quadratic speedup: the fit shown is S �
0:45d2 � 0:9d� 1.

We also consider an alternative definition for the
speedup, based on the time taken to achieve a fixed average
impurity hLi. We calculate this speed-up factor for the LO
algorithm numerically, and plot it as a function of hLi in
Fig. 3. While our run time is necessarily limited, these
results indicate that the asymptotic speedup also falls
within the bounds derived for hln�i above.

In an experimental implementation it may not be fea-
sible to continually, and thus very rapidly, rearrange the
elements of �. It turns out that rearranging the elements of
� at regular intervals instead is sufficient to obtain most of
the speedup. In this alternative strategy the uncertainty
tends to be localized into three adjacent eigenstates by
allowing the measurement to proceed without feedback
for a fixed time. After the fixed time the feedback algo-
rithm rearranges the eigenvalues into L ordering. We si-
mulated this scenario for d � 4, with rearrangements
performed at intervals of t � 0:2=�. The resulting speedup
is plotted in Fig. 3, showing that the performance is not
reduced significantly by this change. We find that when the
feedback is turned on the rate of decrease of hLi is in fact
greater than that for the LO feedback algorithm. However,
this rate decreases over time, and at no time does the
alternative strategy beat the locally optimal algorithm.
This suggests that the latter may be globally optimal.

We now generalize the above rapid-measurement proto-
col to a register of n qubits, where each qubit is indepen-
dently and continuously measured. Instead of one
observable X, we now have n, given by Zr � I�1� � I�2� �
	 	 	 � ��r�z � 	 	 	 � I�n�, where r labels the rth qubit. The
SME describing such a measurement is [17]

 d� �
X

r

2�dtD�Zr���
������
2�
p

dWrH �Zr��: (9)

We transform Zr according to Zr ! Zr � I and order the
eigenvalues of � such that �� > �	 when �< 	, where �,
	 are binary strings. Without loss of generality we can
assume the largest eigenvalue of � (��0) to be placed such
that it corresponds to j�0i � j00 	 	 	 0i. Using a similar
technique to that described above Eq. (3), we obtain a
long-time analytical expression for hln�i in the absence

FIG. 1 (color online). The speedup in the mean time to reach a
given infidelity for systems of dimension d � 3, 4, and 5, when
the initial state is completely mixed. The dotted lines give the
numerically calculated asymptotic speedup.

FIG. 2 (color online). The asymptotic speedup for reaching a
given level of infidelity as a function of the system dimension.
The dotted line is a linear fit to the data points. The solid lines are
the upper and lower bounds derived in the text.

FIG. 3 (color online). The asymptotic speedup in the time
required to reach a given level of average purity, as a function
of the final average linear entropy. Solid lines: continual feed-
back for systems of dimension 3, 4, and 5; dotted line: periodic
feedback at intervals of t � 0:2=�.
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of feedback: hln���iNFB ��16�t. For the LO feedback
algorithm, the SME (9) is used to calculate the average rate
of change of the log infidelity, which is

 dhln�i � �4�dt

P
rhZri

2�1� ��2

�2 : (10)

Now we wish to maximize the average reduction of the log
infidelity for a given � using feedback. This is achieved by
reordering the elements of �, so as to maximize

P
rhZri

2, in
the following way. By definition (above) the largest eigen-
value is at j�0i. The second-largest eigenvalue �00			01 is
then placed at j�1i such that it is the maximum Hamming
distance [18] away. The next n largest eigenvalues are
placed at one Hamming unit away from j�1i. Then the
next nC2 largest eigenvalues are placed two Hamming
units away from j�1i and so on (this process is repeated a
total of n� 1 times). We call this ordering H ordering [19]
and it is LO for the hln�i measure. Example H orderings
for a two- and three-qubit register are depicted in the Fig. 4
insets.

We now bound, for a register of qubits, the amount by
which the H ordering algorithm speeds up the measure-
ment process. To do this we must bound

P
rhZri

2. The
upper bound corresponds to the probability being concen-
trated into the eigenvalue that is maximally distant from
j�0i, that is �00			1 � �, while the lower bound is reached
when the probability � is distributed equally over the
remaining 2n � 1 eigenvalues. The bounds are
�n22n=�2n � 1�2��2 �

P
rhZri

2 � 4n�2. In the long-time
limit (� 1) we thus find

 dhln�iLO � �4�dtSLO; (11)

 n22n=4�2n � 1�2 � SLO � n: (12)

For n * 7 the lower bound is approximately n=4. These
are rigorous bounds on the speed-up factor for hln�i, and
once again we expect these to well approximate the be-
havior of hTi. To confirm this we performed numerical
simulations of the NFB and LO algorithms for quantum
registers of different sizes, and extrapolated the asymptotic
speedups as above. The results are displayed in Fig. 4, and
show the expected linear dependence on the number of
qubits; the linear fit is SH � 0:718n.

In summary, we have shown that it is possible to use
feedback control during a measurement process to increase
the speed of the measurement by a factor proportional to
d2. One can also use this method to speed up the measure-
ment of a register of n qubits by a factor that scales as n.
We expect that approximate algorithms which are experi-
mentally feasible should achieve most of this speedup, so
that feedback-enhanced measurement could be applied in a
variety of quantum technologies.
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FIG. 4 (color online). The asymptotic speedup in the mean
time for a quantum register to reach a given level of infidelity, as
a function of the number of qubits in the register. The dashed line
is a linear fit. The solid lines are the bounds derived in the text.
Insets: The optimal eigenvalue arrangement for (a) a two qubit
register and (b) a three-qubit register.
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