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We present an exact analytical solution of the fundamental system of quasi-one-dimensional spin-1
bosons with infinite � repulsion. The eigenfunctions are constructed from the wave functions of
noninteracting spinless fermions, based on Girardeau’s Fermi-Bose mapping. We show that the spinor
bosons behave like a compound of noninteracting spinless fermions and noninteracting distinguishable
spins. This duality is especially reflected in the spin densities and the energy spectrum. We find that the
momentum distribution of the eigenstates depends on the symmetry of the spin function. Furthermore, we
discuss the splitting of the ground state multiplet in the regime of large but finite repulsion.
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Introduction.—Strong correlations are the basis of some
of the most fascinating and important phenomena in many-
body quantum systems. One intriguing only recently ex-
perimentally realized example [1,2] is the Tonks-Girardeau
gas [3], in which a one-dimensional (1D) system of
strongly interacting bosons acquires fermionic properties.
Already in 1960 Girardeau found an elegant solution of
these systems which maps the wave functions of noninter-
acting spinless fermions to that of spinless hard-core bo-
sons. However, a thorough description of quasi-1D bosons
needs to include the spin degrees of freedom. Surprisingly,
thus far no Fermi-Bose mapping for these important sys-
tems exists. In current investigations Girardeau’s Fermi-
Bose mapping has been extended to fermionic Tonks-
Girardeau gases [4–7] and very recently also to mixtures
[8] and two-level atoms [9]. Ferromagnetic behavior in a
strongly interacting two-component Bose gas has been
found in the thermodynamic limit [10].

In this Letter we present for the first time an analytically
exact solution of quasi-1D bosons with infinite � repulsion,
which includes the spin degrees of freedom. We show that
the strongly interacting spinor bosons behave like a com-
pound of noninteracting spinless fermions and noninteract-
ing distinguishable spins which is especially reflected in
the spin densities and the energy spectrum. These proper-
ties are very different from those of weakly interacting
spinor Bose gases [11]. In contrast to single-component
systems the momentum distribution of the spinor bosons
depends on the symmetry of the spin function.

Model.—The many-body Hamiltonian describing N
quasi-1D spin-1 bosons at zero magnetic field is given by
the 3N � 3N dimensional matrix [11]
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where m is the mass of the bosons, ! is the axial trap
frequency, 1spin is the identity matrix in spin space, U0 and
U2 are the coupling constants of the spin-independent and
spin-dependent interactions, and ~fi denote the dimension-
less spin-1 matrices of boson i. We consider a highly
elongated trap where the transverse trap frequency !?
is much larger than the axial trap frequency (!? 
 !).
In this limit the effective coupling constants are given by
Ui � 2@!?ci� (i � 0; 2) with � � 1=�1� 1:46a0=

���
2
p
l?�

[12], c0 � �a0 � 2a2�=3, and c2 � �a2 � a0�=3 [11],
where a0 and a2 are the s-wave scattering lengths and l? ���������������������
@=�m!?�

p
. We neglect p-wave scattering [6]. The

Hamiltonian (1) conserves parity �, total magnetization
Fz, and total spin ~F2 � ~F �

P
i
~fi�. In the limit of infinite

repulsion (U0 � 1) we use a Fermi-Bose map to construct
the eigenfunctions of (1), whereas for large but finite
repulsion we numerically diagonalize (1) via a finite basis
set approach [13].

Exact eigenstates in the limit of infinite repulsion.—We
first construct the exact eigenfunctions of the Hamiltonian
(1) in the limit of infinite repulsion (U0 � 1). In this limit
one can neglect the spin-dependent interaction and we set
U2 � 0. For simplicity we restrict our discussion to the
ground states of spin-1 bosons. Because of the infinite �
repulsion the configuration space RN decomposes into N!
sectors C� � f�z1; . . . ; zN� 2 RN; z��1� < � � �< z��N�g,
where � is an arbitrary permutation. At the boundaries
of these sectors the wave function has to be zero
[ �z1; . . . ; zN� � 0 if zi � zj] and within these sectors the
wave function has to obey the Schrödinger equation of
noninteracting particles.

Let us disregard the spin of the wave function in a first
step. The Fermi ground state  F0 of the problem above is
given by the ground state Slater determinant of noninter-
acting spinless fermions. The ground state of spinless
bosons  B0 is given by the absolute value of the Fermi
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ground state [3]:  B0 � j 
F
0 j. There is no symmetry restric-

tion to the wave function of distinguishable particles. Thus,
any restriction of the Tonks-Girardeau ground state  B0 to
an arbitrary sector C� is a nonsymmetric ground state of N
spinless distinguishable particles which we denote by j�i.
Restrictions to different sectors are orthogonal. Thus, the
ground state of N spinless distinguishable particles is N!
times degenerate. An orthonormal basis of the space of
ground states is therefore given by

 hz1; . . . ; zNj�i �
� ������
N!
p
j F0 j if z��1� < � � �< z��N�

0 otherwise:
(2)

Now we take the spin into account. The product of an
arbitrary orbital function j�i with an arbitrary N-particle
spin function j�i is an eigenfunction of Hamiltonian (1),
since H is diagonal in spin space (we have neglected U2).
Thus, the wave function j�ij�i describes distinguishable
hard-core particles with spin. In order to describe bosons
one has to symmetrize this nonsymmetric wave function.
One can directly construct all bosonic solutions from the
spin functions by means of the unitary map

 Wj�i �
������
N!
p

PS�jidij�i�; (3)

where PS �
1
N!

P
��SNU��� denotes the symmetric projec-

tion operator and id is the identical permutation. The action
of the permutation operators U��� onto the spinor wave
functions is given by

 U���j�0ijf1; . . . ; fNi � j��0ijf��1�1�; . . . ; f��1�N�i;

where ��0 is the composition of the permutations � and
�0, and fi � �1; 0 are the spin indices of the ith particle.
Equation (3), as the main result of our Letter, provides an
analytical and general extension of Girardeau’s Fermi-
Bose mapping to bosons with spin degrees of freedom.
The map W is isometric, and therefore, an orthonormal set
of spin functions is directly mapped onto an orthonormal
set of bosonic ground states. It is also bijective, and thus the
degeneracy of the ground state equals the dimension of the
N-particle spin space. Further, we can directly construct
bosonic Fz and ~F2 eigenfunctions Wj�i, since Fz and ~F2

commute with PS.
The above construction scheme can be extended to the

excited states and to bosons with arbitrary spin. To obtain
the excited states one has to replace j F0 j in Eq. (2) by A Fi ,
where  Fi is the ith eigenfunction of the noninteracting
fermionic problem and A is the ‘‘unit antisymmetric func-
tion’’ [3]. It follows immediately that the energy eigenval-
ues of the spin-1 bosons at zero magnetic field agree with
the energies of the spinless noninteracting fermions; i.e.,
the ground state energy is given by Eg � N2=2@! and the
level spacing is �E � 1@!. However, the degeneracy of
each energy level is 3N times larger than in the spinless
case. A homogeneous magnetic field lifts the degeneracy
of the levels and shifts the energy of each Fz eigenstate
Wjf1; . . . ; fNi according to the Zeeman energy of the spin
function jf1; . . . ; fNi.

Large finite repulsion.—In the following we analyze the
structure of the ground state multiplet in the regime of
large but finite repulsion. The results are based on a nu-
merical diagonalization of (1). In the limit of infinite
repulsion, U0 � 1, the ground state is 3N times degener-
ate. For realistic systems the spin-independent interaction
U0 is large and finite and the spin-dependent interaction U2

is much smaller so that the ground state energy level is
quasidegenerate. Let us first consider the case that U2 is
zero. Then, states with completely symmetric spin func-
tions have lowest energy [14], whereas states with most
antisymmetric spin functions have highest energy. The
energy gap �E0, which arises from the symmetry of the
spin function (which is closely related to the symmetry of
the corresponding orbital functions), is proportional to
@!= ~U0 [ ~Ui � Ui=�@!l� are dimensionless interaction
strengths and l �

�����������������
@=�m!�

p
]. A similar energy structure

has been discussed in Ref. [8] for a two-component system.
Let us now switch on U2. Then, all states become ~F2

eigenstates and the states with completely symmetric
spin functions have total spin F � N;N � 2; N � 4; . . .
[14]. For ferromagnetic coupling, U2 < 0, states with F �
N have lowest energy whereas for antiferromagnetic cou-
pling, U2 > 0, states with F � 1 (if N is odd) or F � 0 (if
N is even) become ground states. The energy gap �E2,
which arises from the spin-dependent interaction, is pro-
portional to @! ~U2= ~U2

0, since the local correlation function
g2 is proportional to 1= ~U2

0 in the limit of strong repulsion
[15] and �E2 � U2g2.

For a sufficiently large repulsion, the quasidegenerate
ground states are well approximated by the states (3). As an
example, Fig. 1 shows the 3-boson state j i � Wj�i with
j�i � 1=2�j0;1;�1i� j0;�1;1i� j1;�1;0i� j� 1;1;0i�
(red solid line), which is a Fz, ~F2, and parity eigenstate
(Fz � 0, F � 1, � � �1), compared to the corresponding
solution of a numerical diagonalization of (1) with parame-
ters U0=l � 20@! and U2 � �U0=2000 (blue dashed
line). Both solutions are in excellent agreement, and thus
the limit of infinite repulsion is practically reached at
U0=l � 20@! [13,16]. Note that at finite U0 the state
shown in Fig. 1 is an excited state within the ground state
multiplet, since j�i is not completely symmetric.

Spin densities of the ground states.—Apart from the
energy spectrum, the dual nature of the hard-core bosons
with spin can best be seen in the densities. While the
total density is independent of the spin degrees of
freedom and equal to that of noninteracting fermions, the
spin density �fz�z� �

P
i

R
dz1; . . . ; dzN

P
f1;...;fN��z�

zi��fzfi j f1;...;fN �z1; . . . ; zN�j
2 resembles the one of a chain

of localized, distinguishable spins. In the limit of infinite �
repulsion the wave function is given by j i � Wj�i and
one finds

 �fz�z� �
X
i

pi�fz���i��z�; (4)

with the probability pi�fz� that the ith spin is equal to fz,
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 pi�fz� �
X

f1;...;fN

jhf1; . . . ; fNj�ij2�fzfi ;

and the probability density ��i��z� to find the ith particle of
the system, restricted to the standard sector Cid, at point z,
 

��i��z� � N!
Z
z1<���<zN

dz1; . . . ; dzNj 
F
0 �z1; . . . ; zN�j

2

� ��z� zi�:

An explicit calculation yields the following formula
 

��i��z� �
@
@z

�XN�i
k�0

��1�N�i�N � k� 1�!

�i� 1�!�N � k� i�!k!

@k

@�k

� det�B�z� � �1	j��0

�
;

where the N � N matrix B�z� has entries �ij�z� �R
z
�1 dx	i�x�	j�x� with the single-particle eigenfunctions

of the spinless problem 	i.
Spin densities of selected ground states of 8 spin-1

bosons are shown in Fig. 2. Since the total spin of each
atom is one, the spin density has 3 components which
correspond to fz � �1; 0, and which are drawn as a blue
dashed line (�1), a red solid line (�0), and a green dotted
line (��1). By interpreting the square root of the densities
��i� [gray dash-dotted line in Figs. 2(a) and 2(b)] as the

wave packet of an imaginary particle,  �i� :�
�������
��i�

q
, we

obtain the intuitive picture of distinguishable localized
particles which are arranged in a row along the z axis,
one after the other [2,17]. Each particle has a certain spin

orientation fi according to the spin state j�i � jf1; f2; . . .i.
The spin density of the bosonic system now corresponds to
the spin density of this row of distinguishable particles
with the spin orientations given by j�i.

Figure 2(a) shows the spin density of the spin-polarized
state Wj��i � Wj1; 1; . . .i. In the spin-polarized case all
the probabilities pi�1� � 1 and Eq. (4) reduces to �1 �P
i�
�i� � �Fermi. Figure 2(b) shows the spin density of the

ground state Wj1; 1; 1; 0; 0; 0; 0; 1i. Similarly one has to
add the particle densities ��1�–��3� and ��8� to the compo-
nent �1, and the particle densities ��4� � ��7� to the com-
ponent �0 of the spin density. Finally, Figs. 2(c) and 2(d)
show the spin densities of the ground state
Wj1;�1; 1; 0; 0;�1;�1; 1i and the superposition state
W 1��

2
p �j0; 0; . . .i � j1;�1; 1;�1; . . .i�, respectively.

Momentum distributions of the ground states.—One
of the most important experimentally accessible quan-
tities is the momentum distribution of the spinor bosons,
given by ��p� �

P
i

R
dp1; . . . ; dpN

P
f1;...;fN��p�

pi�j f1;...;fN �p1; . . . ; pN�j2. Figure 3 shows selected mo-
mentum distributions of 5 spinor bosons in their degenerate
ground states, obtained from a numerical diagonalization
of (1). For comparison we have also plotted the momentum
distribution of 5 noninteracting fermions (gray dashed
line). It turns out that the shape of the momentum distri-
bution depends on the symmetry of the spin function so
that different ground states can have completely different
momentum distributions. States with a completely sym-
metric spin function have a completely symmetric orbital
function, Wj�si � j F0 jj�si, which is given by the usual
Tonks-Girardeau wave function. The momentum distribu-
tion of these states is equal to the one of a spinless Tonks-
Girardeau gas (blue dash-dotted line) [13,18]. The other

FIG. 2 (color online). Spin densities of 8 spin-1 bosons in
different ground states (see text). Shown are the densities ��i�

(gray dash-dotted line, see text), and the components �0 (red
solid line), �1 (blue dashed line), and ��1 (green dotted line) of
the spin density. The spin densities resemble the one of a chain of
localized spins.

FIG. 1 (color online). Cut through the nonzero spin compo-
nents of a bosonic 3-particle state (see text). The second and the
third coordinate are fixed at z2 � �0:8l and z3 � 0:8l. Shown is
the exact wave function in the limit of infinite � repulsion (red
solid line) and the solution of a numerical diagonalizion of (1) in
the limit of large but finite repulsion (blue dashed line).
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extreme case is given by a flat and broad momentum
distribution which resembles the fermionic one (red solid
line). In the case of 2 and 3 spin-1 bosons some spin
functions j�ai can be completely antisymmetric and thus
the corresponding ground state is given by Wj�ai �
 F0 j�ai so that its momentum distribution is equal to the
one of spinless fermions. One cannot construct completely
antisymmetric spin functions with more than 3 spin-1
particles. However, it is possible to construct nonsymmet-
ric spin functions which are ‘‘almost antisymmetric’’ (see
Young’s tableaux [19]) resulting in momentum distribu-
tions which are almost fermionic. We believe, due to
group theoretical arguments [19], that this broadening
and flattening of some momentum distributions saturates
for large N.

Preparation and manipulation of the states.—Spin-
polarized Tonks-Girardeau gases have been prepared
with ultracold 87Rb atoms in optical lattices [1,2]. To
prepare states with nonsymmetric spin functions we sug-
gest to apply a radio frequency together with a magnetic
field gradient so that the spin of each atom is rotated into a
different final state depending on its position.

Summary.—We have constructed the exact eigenstates
of the fundamental system of quasi-1D spin-1 bosons with
infinite � repulsion by means of a Fermi-Bose map. The
construction scheme and the formula for the spin densities
are valid independent of the particle number, the spin of the
bosons, and the (spin-independent) trapping potential.
From the exact solutions we have determined the energy
spectrum and the spin densities of the ground states. The
momentum distribution of the eigenstates turned out to be
dependent on the symmetry of the spin functions. Some
ground states have a momentum distribution which is
much broader and flatter than for a spinless Tonks-
Girardeau gas. For large but finite repulsion we have dis-

cussed the level structure of the ground state multiplet.
Because of the similarity with distinguishable spins the
spinor Tonks-Girardeau gas might be a promising candi-
date for novel quantum computation schemes.
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