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A model for self-propulsion of a colloidal particle—the osmotic motor—immersed in a dispersion of
‘‘bath’’ particles is presented. The nonequilibrium concentration of bath particles induced by a surface
chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the
speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate
the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow
reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates
over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of
these features for different bath particle volume fractions and motor sizes are discussed. Theoretical
predictions are compared with Brownian dynamics simulations.
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The design of nanoengines that convert stored chemical
energy into motion is a key challenge of nanotechnology,
especially for engines that can operate autonomously [1].
Although biomolecular motors [2] and phoretic mecha-
nisms [3] have been the focus of intense research as a
means for powering nanodevices, many of the proposed
techniques rely on external forcing or signaling, which
adds complexity, not to mention the macro-scale size
required for some driving mechanisms. Recently, Paxton
et al. [4] demonstrated that it is possible to power the
motion of nanoscale objects by using surface catalytic
reactions—so-called catalytic nanomotors.

A number of mechanisms have been suggested for nano-
motor propulsion [5,6], including bubble propulsion, dif-
fusiophoresis, electrophoresis, surface-tension gradients,
etc.; all of which rely on the establishment of a gradient
to provide the driving force for motion. Creation of such a
gradient requires an on-board power source—chemical
energy. But exactly how does a local chemical reaction
generate motion? Or asked differently, what is the simplest
motor one can envision? What mechanism would it use for
propulsion? How fast can it move? How large of a force
can it generate?

Here we propose a very simple mechanism: osmotic
propulsion. When a semipermeable membrane separates
a fluid containing colloidal particles, a flow is induced from
the low to the high particle concentration side. The pres-
sure that stops the flow is the osmotic pressure. If the
membrane is released, the osmotic pressure difference
between the two sides will cause it to move until equilib-
rium is established. In this way the microscopic kinetic
energy of the (Brownian) particles is transformed into
macroscopic mechanical motion and work.

But one does not need a membrane. A colloidal particle
in solution moves randomly, but if the distribution of other
colloidal particles in its vicinity is perturbed, some average
directional movement can be obtained. Such is the case in

multicomponent diffusion where a gradient in concentra-
tion of one species drives the flux of another [7,8].
Similarly, depletion flocculation occurs when small parti-
cles (e.g., polymers) are excluded from a zone separating
two nearly touching colloidal particles and the imbalanced
osmotic pressure of the small particles causes an entropic
attractive force [9]. Consider now a nonuniform concen-
tration distribution of colloidal particles created locally by
a surface chemical reaction on another (larger) particle.
The resulting imbalanced osmotic force will induce au-
tonomous motion—an osmotic motor. This is a simple
means by which random entropic motion can be harnessed
by a chemical reaction to create directed motion. Just how
large a force can be generated and how fast an object can
move is the subject of this Letter.

Consider a single spherical motor particle of size a
immersed in a fluid and surrounded by a sea of spherical
‘‘bath’’ particles of size b. Both the motor and bath parti-
cles are large compared to the solvent molecules so that
their behavior can be described by the equations of colloi-
dal dynamics [10]. The suspension of bath particles gen-
erates an osmotic pressure � � nbkT, where kT is the
thermal energy and nb is the number density of bath
particles. (For simplicity, the bath particles are modeled
as an ideal gas.) The bath particles exert an entropic or
osmotic force on the motor, which is the integral of the
osmotic pressure over the surface of the motor: Fosm �
�kT

R
nnb�x�dS, where n is the outer normal to the sur-

face located at the sum of the radii of the motor and the
bath particles.

At equilibrium the bath particle concentration is uniform
and the net osmotic force is zero. However, if there is a
nonuniform concentration of bath particles, either caused
by an externally imposed concentration gradient or by the
motor itself via a chemical reaction on its surface, there
will be a net osmotic force on the motor. This force must be
balanced by an externally imposed force (via, e.g., optical
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tweezers) to hold the motor fixed, or by the hydrodynamic
Stokes drag force from the solvent Fhyd � �6��aU,
where � is the viscosity of the solvent and U is the motor
velocity. (A formal statistical mechanical derivation fol-
lows the work on single particle motion in colloidal dis-
persions and microrheology [11,12].) An externally
imposed concentration gradient gives rise to diffusiopho-
resis [3], whereas a surface chemical reaction alters the
local concentration of bath particles and results in autono-
mous motion—namely, the osmotic motor.

Reaction-driven propulsion was discussed recently by
Golestanian et al. [6,13]. Their propulsive mechanism is
based on the thin-interfacial-limit expressions for phoretic
motion [3]. Our mechanism shares the idea of a concen-
tration gradient driving the motion but appears to be differ-
ent, and is not restricted to a thin-interfacial limit, e.g., not
limited to large motors. Furthermore, these authors did not
discuss the conservation of mass (or volume) associated
with the chemical reaction, nor did they identify the maxi-
mum velocity obtainable by a motor, two issues that are
important for the motor’s behavior.

To compute the osmotic force, the concentration distri-
bution of bath particles about the motor is needed. The bath
particles are divided into reactants, labeled R, and products
P. On the reactive portion of the motor surface: R! sP,
where for each reactant particle ‘s’ product particles are
produced; s can take any value greater than or equal to
zero. Conservation of mass requires thatmR � smP, where
mR is the mass of the reactant particle and mP that of the
products. For spherical particles of the same density con-
servation of mass is equivalent to conservation of volume
and therefore bR � s1=3bP, where bR and bP are the radii of
the reactants and products, respectively. The rate of con-
sumption of R on the reactive surface is rR, and the
production of P is rP � �srR.

We first consider a fixed motor. Since the reaction only
takes place at the motor surface, the reactants and products
diffuse in the surrounding fluid with translational diffusiv-
ities DR and DP, respectively, and their concentrations
satisfy Laplace’s equation. For the reactant: r2nR � 0,
subject to the imposed concentration far from the motor,
n1R , and the flux to the motor is balanced by the reaction on
the motor surface: n � rnR � rR�a� bR�=DR. All lengths
have been nondimensionalized by the sum of the motor and
reactant radii: a� bR. The products satisfy a similar equa-
tion with the subscript R replaced by P. However, the
osmotic force is proportional to the total concentration of
bath particles nb � nR � nP, which satisfies r2nb � 0,
subject to n1b � n1R � n

1
P , and at the motor surface n �

rnb � rR�a� bR�=DR � �1� sDR=DP�. Defining the
scaled concentration differences: �n0R � �nR � n

1
R �=n

1
R

and �n0b � �nb � n
1
b �=n

1
R �1� sDR=DP� it is easy to see

that �n0R and �n0b satisfy the same Laplace equation and
boundary conditions. Thus, only the reactant concentration
profile is needed to completely solve the problem for all

stoichiometries and diffusivity ratios. The osmotic force is

 F osm � �n1R kT�a� bR�
2

�
1� s

DR

DP

�Z
r�1
n �n0b�x�d�;

(1)

where d� � dS=�a� bR�
2 is the solid angle [14].

The stoichiometry/diffusivity factor, (1� sDR=DP),
tells how many products are produced per reactant, s,
and how fast the products diffusive relative to the reactants,
DR=DP. And it is this combination that governs the behav-
ior. If we had simply R! P (or s � 1) and the product had
the same diffusivity as the reactant, the net osmotic force
would be identically zero as it must be. However, if the
reactants and products have different diffusivities, say
because the reaction changes the ‘‘shape’’ of the particle,
or perhaps its interactions with the solvent (hydrophillic or
hydrophobic), then even if only one product is produced
for each reactant there will still be a net osmotic force on
the motor. The sign of the force will depend on which
diffuses faster. And similar arguments apply for s � 1.

As a first analysis consider a first-order reaction with
rate constant � (units of velocity), i.e. rR � �nR. The
reactant concentration profile is governed by the ratio of
the speed of reaction to that of diffusion—the Damköhler
number Da � ��a� b�=D. We have dropped the subscript
R for the reactant and will simply refer to the reactant as a
bath particle. The boundary condition at the motor surface
now becomes n � r �n0 � Da� �n0 � 1�h�n�. The distribution
of reaction on the surface is determined by the dimension-
less function h�n�, which we take to be 1 on the reactive
half and 0 on the passive half. Since the detailed stoichi-
ometry/diffusivity appears as a scale factor in the net
osmotic force (1), we discuss below the case when
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FIG. 1 (color online). The scaled osmotic velocity for a motor
with a first-order reaction on half of its surface plotted against Da
for various values of�b�1� a=b�2. Here,Da � kT=6��a is the
Stokes-Einstein-Sutherland ‘‘diffusivity’’ of the motor
[cf. Eq. (2)]. The theoretical predictions (curves) are compared
with BD simulations (symbols). The solid curve corresponds to
the fixed motor shown for comparison.
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sDR=DP ! 0, which would occur if the products are much
more diffusive than the reactants or when the reactant is
consumed (s � 0) by the motor [15].

The concentration distribution of bath particles can be
found analytically by separation of variables, and Fig. 1
shows the nondimensional osmotic force (expressed as a
Stokes velocity) as a function of Da. The open symbols in
the figure are the results of conventional hard-sphere
Brownian dynamics (BD) simulations [16,17], modified
to allow for surface reaction. As the theory predicts, the
scaled osmotic force is independent of the size ratio of
motor to bath particles, a=b, the bulk concentration of the
bath particles expressed as their volume fraction, �b �

n1b b
34�=3, and from the time step �t used in the simula-

tions. Bath particles are consumed on the reactive side
decreasing their local concentration near the motor. Thus,
there are more collisions with bath particles on the passive
side, resulting in an imbalanced osmotic pressure and a
force on the motor in the direction of the decreasing bath
particle concentration. For slow reactions, the osmotic
force is linear in Da: Fosm � n1R kT�a� b�

2�1�
sDR=DP�Da � n1R �a� b�

3�1� sDR=DP�6��b�, where
we have used the Stokes-Einstein-Sutherland expression
for the bath particle diffusivity D � kT=6��b. This has a
simple physical interpretation: each bath particle reacting
with the motor strikes the motor with speed � and thus
hydrodynamic force 6��b� and there are n1R �a� b�

3

colliding bath particles. The stoichiometry/diffusivity fac-
tor, (1� sDR=DP), then giving the net osmotic force. At
the other extreme of high Da, or fast reaction, the concen-
tration on the reactive half is zero as the reaction is now
diffusion limited. The osmotic force saturates and simply
scales as the jump in concentration from the passive (nR 	
n1R ) to reactive (nR � 0) side times the area: Fosm �
n1R kT�a� b�

2�1� sDR=DP�. The transition from reaction
to diffusion controlled occurs, appropriately, at a
Damköhler number of unity.

It is instructive to ask what is the magnitude of the force
that must be exerted on the motor to keep it fixed? The
maximum force occurs in the large Damköhler number
limit for large motors (a
 b). For a motor of a �
1 �m with a 0.1 M bath particle concentration, the osmotic
force is of order 0:2 �N, an easily measurable force. In
fact, it is rather large as optical tweezers typically exert
nano-Newton forces and biological motors exert pico-
Newton forces. Indeed, if the motor were released it would
travel with a speed of order 10 m=s. This surprising and
aphysical result is resolved by noting that the motor cannot
travel any faster than the bath particles can diffuse—that
is, no faster than their diffusive velocity vbath �D=�a�
b�. If the motor were to move faster than this velocity, the
bath particles could not keep up, and the motor would loose
the propulsive force that caused it to move in the first place.

The resolution of this paradox is to recognize that, in a
frame of reference traveling with the free motor, there will

be an advective flux of bath particles towards the motor
that will alter the concentration distribution about the
motor and consequently, the propulsive osmotic force.
The strength of the advective flux compared to the diffu-
sive motion is given by a Péclet number Pe � U�a�
b�=D, where U is the as yet unknown free motor velocity.
And now there will be Péclet numbers for both the reac-
tants, PeR � U�a� bR�=DR, and products, PeP � U�a�
bP�=DP, and they differ by the diffusivity ratio. The scaled
reactant concentration distribution now satisfies the
advection-diffusion equation r2 �n0R � �PeR@ �n0R=@z,
where the direction of motion is taken to be the z direction.
The products also satisfy the same equation with R re-
placed by P. The total concentration �n0b does not satisfy the
same equation as the reactants, unless PeR � PeP, which
will be true in the small and large Péclet number limits.
The osmotic force is still scaled as before, however, and the
unknown velocity is found from balancing the Stokes drag
on the motor with the osmotic force:

 U � �
kT

6��a
n1R �a� b�

2

�
1� s

DR

DP

�Z
n �n0b�x�d�; (2)

where the total concentration �n0b�x� now depends on the
Damköhler and Péclet numbers. Note that the motor ve-
locity, and thus the Péclet numbers, are unknown and must
be determined self-consistently along with the coupled
concentration distributions �n0b and �n0R from the advection-
diffusion equations. This is somewhat involved, and here
we discuss the limiting case of sDR=DP ! 0 for which the
product distribution drops out and the bath particle con-
centration is the same as that of the reactants.

Figure 1 shows the predictions for the free motor veloc-
ity as a function of Da from the analytical solution. In
contrast to the fixed motor case (the solid line), the speed of

FIG. 2 (color online). Density profiles in the symmetry plane
of the osmotic motor at Da � 100. The four panels correspond to
the four curves (from top to bottom) in Fig. 1. Red is low bath
particle concentration and blue the uniform level far from the
motor. The right half of the motor is reactive and its motion is
from left to right.

PRL 100, 158303 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 APRIL 2008

158303-3



the motor now does depend on a=b and on�b (even though
the bath particles form an ideal gas). As before, the open
symbols correspond to BD simulations for the same con-
ditions of volume fraction and size ratio as in the theory
and show excellent agreement. The curves correspond to
increasing the product �b�1� a=b�2, which follows di-
rectly from (2) and corresponds to the number of bath
particles within a bath particle radius of the motor surface.

Figure 2 shows density plots of the bath particle con-
centration near the motor at Da � 100, but for different
values of �b�1� a=b�2, corresponding to each of the four
curves in Fig. 1. Also shown on the plots are the resulting
Péclet numbers corresponding to the motor velocities. As
the Péclet number increases the advection of the bath
particles past the motor distorts the bath particle concen-
tration, shrinking the bath-particle-depleted region in front
of the motor and leaving a trailing ‘‘wake’’ of reduced bath
particle concentration. At even modest motor velocities
(modest Pe) most of the rear of the motor has a very low
bath particle concentration, which reduces the osmotic
force and thus limits the speed of the motor. This self-
regulation results in a maximum motor velocity of order
the diffusion velocity of the bath particles Umax � vbath �
D=�a� b�. For a 1 �m sized motor and nanometer-sized
bath particles the maximum motor velocity is now of order
10 �m=s, a much more reasonable velocity, and one that is
in fair agreement with the motivating experiments of
Paxton et al. [4].

The results in Fig. 1 show that the fixed motor is the limit
as �b�1� a=b�2 ! 0 (Pe � 0) of the free motor, corre-
sponding to an infinitely dilute suspension of bath parti-
cles. This is as it should be, because whether the motor is
fixed or free is just a change of reference frame. For a fixed
motor there will be an advective flux at infinity to supply
reactive bath particles to the motor. This also implies that
the motor will induce a fluid flow to supply the bath
particles and can be used as a pump—a novel microfluidic
pump (and mixer).

In this analysis we neglected rotary Brownian motion
[18] and hydrodynamic interactions between particles.
Hydrodynamics would quantitatively (not qualitatively)
affect the motor speed and can be included via the well-
known low-Reynolds number hydrodynamic mobility ex-
pressions [10] for the bath particle diffusivity and the
advective velocity. Also, the entropic Brownian force on
the motor contains an additional term that is the integral of
the spatial variation of the relative hydrodynamic mobility
(see [12] for the analogous microrheology problem).

Clearly, neither the motor nor the bath particles need be
spherical, nor must the bath particles form an ideal gas.
And a variety of behaviors is possible depending on the
nature of the chemical reaction at the motor surface, the
number of motors present, etc. Rotary motion is also

possible by having reactive patches strategically located
about the motor surface [19].

Osmotic propulsion provides a simple means to convert
chemical energy into mechanical motion and work, and
can impact the design and operation of nanodevices, with
applications in directed self-assembly of materials, thermal
management of micro- and nanoprocessors, and the
operation of chemical and biological sensors. Studies of
autonomous motors may also help to understand chemo-
mechanical transduction observed in biological systems
[20] and to create novel artificial motors that mimic living
organisms and which can be harnessed to perform desired
tasks.
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