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We propose to estimate transfer entropy using a technique of symbolization. We demonstrate
numerically that symbolic transfer entropy is a robust and computationally fast method to quantify the
dominating direction of information flow between time series from structurally identical and nonidentical
coupled systems. Analyzing multiday, multichannel electroencephalographic recordings from 15 epilepsy
patients our approach allowed us to reliably identify the hemisphere containing the epileptic focus without
observing actual seizure activity.
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Understanding couplings between dynamical systems is
a topic of general interest since synchronization and related
complex interaction phenomena can be observed in many
disciplines ranging from physics to the neurosciences
[1,2]. The investigation of interactions addresses two major
aspects, namely, the detection and quantification of
strength and direction (or asymmetry) of couplings. In
situations where the underlying equations of motion are
not known, a detailed quantitative description can never-
theless be achieved by applying time series analysis tech-
niques to experimentally acquired observables. Much work
has been devoted to the problem of assessing directional
couplings, and current approaches include estimates of
phase dynamics [3–5], estimates based on the reconstruc-
tion of state spaces [6–8], methods that are based on
recurrence properties of interacting systems [9], and infor-
mation theoretic approaches [10] (see Ref. [11] for an
overview). In principle, asymmetric dependences between
coupled systems can be detected with measures that share
some of the properties of mutual information [12] and take
into account the dynamics of information transport.
Transfer entropy [13], which is related to the concept of
Granger causality [14], has been proposed to distinguish
effectively driving and responding elements and to detect
asymmetry in the interaction of subsystems. By appropri-
ate conditioning of transition probabilities this quantity has
been shown to be superior to the standard time delayed
mutual information, which fails to distinguish information
that is actually exchanged from shared information due to
common history and input signals. Let xi � x�i� and yi �
y�i�, i � 1; . . . ; N, denote sequences of observations from
systems X and Y. Transfer entropy incorporates time de-
pendence by relating previous samples xi and yi to predict
the next value xi�1, and quantifies the deviation from the
generalized Markov property, p�xi�1jxi; yi� � p�xi�1jxi�,
where p denotes the transition probability density. If there
is no deviation from the generalized Markov property, Y
has no influence on X. Transfer entropy, which is formu-
lated as Kullback-Leibler entropy between p�xi�1jxi; yi�

and p�xi�1jxi�, quantifies the incorrectness of this assump-
tion, and is explicitly nonsymmetric under the exchange of
xi and yi. In Refs. [15–17] various techniques have been
proposed to estimate transfer entropy from observed data.
Most techniques, however, make great demands on the
data, require fine-tuning of parameters, and are highly
sensitive to noise contributions, which limits the use of
transfer entropy to field applications.

In this Letter, we suggest to estimate transfer entropy by
adopting a technique of symbolization, which has already
been introduced with the concept of permutation entropy
[18,19]. We follow Ref. [18] and define symbols by reor-
dering the amplitude values of time series xi and yi. For a
given, but otherwise arbitrary i, m amplitude values Xi �
fx�i�; x�i� l�; . . . ; x�i� �m� 1�l�g are arranged in an as-
cending order fx�i� �ki1 � 1�l� � x�i� �ki2 � 1�l� �
. . . � x�i� �kim � 1�l�g, where l denotes the time delay,
and m is the embedding dimension. In case of equal
amplitude values the rearrangement is carried out accord-
ing to the associated index k, i.e., for x�i� �ki1 � 1�l� �
x�i� �ki2 � 1�l�we write x�i� �ki1 � 1�l� � x�i� �ki2 �
1�l� if ki1 < ki2 thereby ensuring that every Xi is uniquely
mapped onto one of the m! possible permutations. A
symbol is thus defined as x̂i � �ki1; ki2; . . . ; kim�, and with
the relative frequency of symbols we estimate joint and
conditional probabilities of the sequence of permutation
indices. Given symbol sequences fx̂ig and fŷig we define
symbolic transfer entropy (STE) as

 TSY;X �
X
p�x̂i��; x̂i; ŷi� log

p�x̂i��jx̂i; ŷi�
p�x̂i��jx̂i�

; (1)

where the sum runs over all symbols and � denotes a time
step. The log is with base 2, thus TSY;X is given in bit. TSX;Y is
defined in complete analogy. The directionality index
TS � �TSX;Y � T

S
Y;X� quantifies the preferred direction of

information flow and is expected to attain positive values
for unidirectional couplings with X as the driver and nega-
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tive values for Y driving X. For symmetric bidirectional
couplings we expect TS � 0.

To demonstrate the use of STE, we study three ex-
amples: interactions between structurally identical and
nonidentical nonlinear oscillators and interactions in
long-lasting, multichannel electroencephalographic
(EEG) recordings from epilepsy patients. Following
Refs. [18,20] we chose the window �m� 1�l such as to
cover about 1–2 basic periods of the systems when con-
structing symbol sequences. In addition, we here restrict
ourselves to � � 1, presuming that a meaningful sampling
rate is already chosen.

First, we study unidirectionally, diffusively coupled
Lorenz oscillators (see Ref. [21] for details), where the
diffusive coupling of strength � is introduced in the
x component of system Y. We integrated the equations of
motion (fourth order Runge-Kutta algorithm with step size
�s � 0:005 and sampling interval �t � 0:03), and with
m � 5 and l � 10 we computed TSX;Y and TSY;X using the
x components of the systems as observables. Time series
consisted of N � 4096 iterations after 104 transients. In
Fig. 1 (upper part) we show the dependence of TS on the
coupling strength �. At zero coupling, TS � 0 but we
observe TSX;Y � TSY;X � 0:75, which would indicate an ex-
change of information between the uncoupled systems.
This bias can be explained by both the limited number of
data points as well as the narrow-band spectra of the
systems [15] and vanishes for systems with broadband
spectra and for N ! 1 (data not shown here). Note that
the bias of TSX;Y and that of TSY;X results in a vanishing bias
of the difference TS. For increasing coupling strengths TS

increases until a maximum is reached at � � 4, which
reflects the growing influence of the driver X on the dy-
namics of the responder Y (cf. the functional dependences
of TSX;Y and TSY;X on � in the inset). TS decreases for � > 4
and the preferred direction of information flow becomes
less evident. In the lower part of Fig. 1 we show, for

comparison, the synchronization index � [22] as a function
of the coupling strength, which indicates the establishment
of synchronization for � > 4. Accordingly TS decreases
and the coupling direction can not be detected for inde-
pendent (� � 0) and for fully synchronized systems (� >
12). Note, that TS increases for 0 � � � 4, while � � 0.

Second, we study a Lorenz system driven by a Rössler
system (see Refs. [8,23,24] for details; fourth order Runge-
Kutta with �s � 0:005 and �t � 0:03). With m � 5 and
l � 10 we estimated TSX;Y and TSY;X using the y components
of the systems as observables (N � 4096 data points after
104 transients). The dependence of the directionality index
TS on the coupling strength � is shown in Fig. 2 (upper
part). The inequality of TSX;Y and TSY;X (cf. inset) entails
slightly positive values for � � 0, which indicates a false
detection of asymmetrical coupling. With an increasing
coupling strength the driving character of the Rössler
system is correctly reflected, and a best identification of
the direction of information flow is achieved for � � 1:5.
Despite the indication of only weak synchronization (� <
1 even for stronger couplings), a detection of the direction
of coupling is possible for a broad range of coupling
strengths.

In Fig. 3 we present the influence of observational noise
on the detectability of directional couplings. We added
Gaussian white noise to the time series of the coupled

FIG. 1 (color online). Top: Directionality index TS as a
function of the coupling strength � in diffusively coupled
Lorenz oscillators. The inset shows the dependences of TSX;Y
(black) and TSY;X (red or gray) on �. Bottom: Dependence of
synchronization index � [22] on � (� � 0 for independent
systems and � � 1 for fully synchronized systems). Error bars
indicate standard deviations from 100 realizations of the systems
using different initial conditions, and for each realization we
randomly chose the control parameter r 2 	28
 1�.

FIG. 2 (color online). Same as Fig. 1 but for a Lorenz system
driven by a Rössler system. Error bars indicate standard devia-
tions from 100 realizations of the systems, with initial conditions
chosen randomly close to the attractors of both systems for each
realization.

FIG. 3 (color online). Ratio � of directionality indices for
noise-free and noise-contaminated time series of diffusively
coupled Lorenz oscillators as a function of the noise-to-signal
ratio NSR � �n=�s, where �n and �s denote the standard
deviations of the noisy and the noise-free time series, respec-
tively. Error bars indicate standard deviations from 100 realiza-
tions of the systems.
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Lorenz oscillators (see above) and observed � � TSn=T
S

for increasing noise-to-signal ratios (NSR). TSn denotes the
directionality index for the noisy time series. At zero
coupling, � fluctuates around zero for the range of NSR
investigated here. We obtained similar results for the
coupled Rössler and Lorenz systems. The resonancelike
behavior of � at stronger couplings (� � 4 cf. Fig. 1)
allows one to detect the direction of coupling more easily
in the presence of noise. This phenomenon can be ex-
plained again by the narrow-band spectra of the systems,
in which case the sparse distribution of symbols yields a
less precise entropy estimate. When adding noise, the
distribution of the symbols is broadened, which advances
the estimation of entropies. For systems with broadband
spectra (e.g., coupled Hénon systems) we observed � to
decrease monotonically with increasing NSR. Never-
theless, the preferred direction of information flow can be
detected even for high noise levels NSR> 1, which ren-
ders STE attractive for the analysis of field data.

With our third example we provide evidence for the high
relevance of our approach to improve understanding of the
complicated spatiotemporal dynamics of the human epi-
leptic brain. Successful brain surgery (i.e., complete sei-
zure control and minimum surgery-induced neurological
deficits) in patients with medically intractable epilepsy
strongly depends on an accurate definition of the brain
volume that has to be resected. This requires the identifi-

cation of the underlying epileptogenic network and a de-
tailed understanding of the functional organization of
cortical areas in which it is embedded, in order to spare
nonaffected cortical regions. We here address the impor-
tant and yet unsolved issue of whether interactions between
the seizure generating area of the brain (epileptic focus)
and remote areas can be identified, particularly during the
seizure-free interval. Understanding the directionality of
possible interactions within the epileptogenic network may
help to improve the evaluation of epilepsy patients candi-
date for resective therapies and to gain deeper insights into
mechanisms that lead to the generation of epileptic seiz-
ures. We retrospectively analyzed EEG data recorded from
15 patients undergoing presurgical evaluation for drug-
resistant temporal lobe epilepsy. Since the localization of
the epileptic focus could not be accomplished by means of
noninvasive EEG recordings, intracranial electrodes [with
Nc � 20 contacts; cf. Fig. 4(a)] were chronically im-
planted for the purpose of identifying the focal seizure
origin. All patients achieved complete seizure control after
surgery so the epileptic focus can be assumed to be con-
tained within the resected area. EEG signals were refer-
enced to a common average, sampled over a longer period
(mean duration: 82.77 h; range: 6–226 h) at 200 Hz using a
16 bit analog-to-digital converter, and filtered within a
frequency band of 0.5 to 85 Hz. All patients had signed
informed consent that their clinical data might be used and

FIG. 4 (color online). (a) Electrode implantation scheme for intrahippocampal depth electrodes. (b) Exemplary temporal evolution
of the preferred direction of information flow TS�c;w�. EEG was recorded over 62.8 h. S denotes electrographic seizure onset, tics on
time axis denote midnight, and arrows indicate the epileptic focus as identified with established presurgical evaluation techniques.
(c) Exemplary directionality matrix. Color coded entries TS�c; c0� represent the temporal average of TS�c; c0; w� for each pair (c, c0) of
electrode contacts and attain positive values if a brain structure sampled with a channel corresponding to row index c drives another
brain structure sampled with a channel corresponding to the column index c0. EEG recording from the seizure-free interval only (total
duration: 44.1 h). (d) Same as (c) but for synchronization indices ��c; c0; w�. (e) The preferred direction of information flow from the
left to the right brain hemisphere TS�L;R� correctly indexes the focal brain hemisphere in all but one of the patients.
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published for research purposes, and the study protocol had
previously been approved by the local ethics committee.
Using a sliding window approach, we performed a time
resolved estimation of TS and � from nonoverlapping EEG
segments of 20.48 s duration [25], and embedding parame-
ters were set to m � 5 and l � 3. For each window w and
electrode contact c we define the preferred direction of
information flow to the remaining Nc � 1 contacts as
TS�c;w� � �Nc � 1��1P

c0�c	T
S
c;c0 �w� � T

S
c0;c�w��. In

Fig. 4(b) we show, as an example, the temporal evolution
of TS�c;w� for an EEG recording lasting about 2.5 days
from a patient with a right-sided epileptic focus. Despite
fluctuations, particularly the brain region sampled with
contacts R06–R09 appears as a strong driving region.
Periods of wakefulness or sleep had only a minor influence
on the temporal evolution of the preferred direction of
information flow. Given the little variance over time we
averaged, for each channel combination (c, c0), the values
of TS�c; c0; w� � TSc;c0 �w� � T

S
c0;c�w� and ��c; c0; w� from

all windows covering the seizure-free interval (we dis-
carded values related to seizures and activities four hours
prior to and 30 min after a seizure [26]), which provides a
compressed view of direction [TS�c; c0�; Fig. 4(c)] and
strength of interactions [��c; c0�; Fig. 4(d)] between all
sampled brain structures. For this patient, the brain region
underlying contacts R06–R09 appears to drive other re-
gions even from the opposite brain hemisphere, despite the
low level of interhemispheric synchronization
[cf. Fig. 4(d)]. Interestingly, this driving structure corre-
sponds to the epileptic focus as identified with established
presurgical evaluation techniques. In all but one of the
patients, the direction of information flow between the
left and the right brain hemisphere TS�L;R� [i.e., the
mean of all TS�c; c0� with c 2 fL01; . . . ; L10g and c0 2
fR01; . . . ; R10g] indicated the driving influence of the
hemisphere containing the epileptic focus, despite the
crude spatial and temporal averaging and without observ-
ing actual seizure activity [cf. Fig. 4(e)].

To conclude, with symbolic transfer entropy we intro-
duced a convenient, robust, and computationally fast [27]
method that allows one to quantify the preferred direction
of information flow between time series from observed
data. These features render STE a promising tool for the
analysis of field data. With our numerical investigations
and the analysis of time series of brain electrical activity
we have shown that asymmetric dependences between
structurally identical and nonidentical coupled but not yet
fully synchronized systems can be reliably detected.
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