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At half filling, the electronic structure of graphene can be modeled by a pair of free two-dimensional
Dirac fermions. We explicitly demonstrate that in the presence of a geometrically induced gauge field an
everywhere-real Kekulé modulation of the hopping matrix elements can correspond to a nonreal Higgs
field with nontrivial vorticity. This provides a natural setting for fractionally charged vortices with
localized zero modes. For fullerenelike molecules we employ the index theorem to demonstrate the
existence of six low-lying states that do not depend strongly on the Kekulé-induced mass gap.
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Planar graphene and its geometrically related variants
offer a rich environment for exploring interesting physics
[1]. The electronic properties of graphene are well modeled
by a simple Hückel model of nearest-neighbor hopping on
a two-dimensional honeycomb lattice [2,3]. The low en-
ergy sector of the resulting band theory may be described
by a pair of two-dimensional Dirac equations. As a con-
sequence, graphene is expected to exhibit phenomena more
familiar in relativistic quantum theory, such as the Klein
paradox [4]. Recently, Hou et al. [5] demonstrated a rela-
tion between graphene and p-wave superconductors,
where fractionally charged vortices can appear. Energetic
considerations guided Jackiw and Pi [6] to extend this
model by inserting a gauge potential. Systematic study,
including the demonstration of the fractional statistics of
these vortices, was given in [7]. Nevertheless, the question
of physically realizing these systems remained open.

Spherical configurations of graphene are known as ful-
lerenes. The altered topology requires defects where 12 of
the regular carbon hexagons are replaced by pentagons.
The resulting frustration and curvature are accounted for in
the Dirac equation by introducing a chiral gauge field and a
spin connection [8–15]. The gauge-field flux (but not the
spin-connection curvature) enters into an index theorem
where it is responsible for the six anomalously low-lying
states seen in the spectrum of C60 and related molecules
[16,17]. Chemists have long surmised that in fullerenes not
all the nearest-neighbor hopping elements are equal. In
numerical calculations with the Hückel model it is found
that the molecules can lower their electronic energy by
undergoing a small Peierls distortion—usually called in
this context a Kekulé distortion. This change in the bond
lengths introduces a scalar ‘‘Higgs’’ field into the Dirac
equation. It has recently been observed, however, that
vortices in a complex-valued Higgs field can bind zero-
energy midgap modes [5–7,18–20].

Here we demonstrate that the Kekulé distortion Higgs
field is not a simple scalar field, but is a section of the
nontrivial gauge bundle. This means that a real-valued
modulation of the hopping strengths in a fullerene will

give rise to a complex-valued Higgs field that automati-
cally contains vortices similar to those of Abrikosov or
Nielsen and Olesen. Thus, fullerenes provide a physical
setting where vortices with fractionalized charge appear
naturally. The number of zero modes bound by these
vortices is equal to the number of zero modes required
by the index theorem [21,22]. Indeed, they are the same
modes.

We begin with the description of a flat sheet of graphene.
In the electronic tight binding (Hückel) approximation [8]
electrons hop on a two-dimensional honeycomb lattice
with lattice constant �. This bipartite lattice can be decom-
posed into two triangular Bravais sublattices �A and �B.
The Hamiltonian can be written

 Ĥ � �
X

r2�A

X3

k�1

�t� �trk�a
y
r br�sk � H:c:; (1)

where the vector r gives the position of the vertices of the
�A lattice and the vectors sk, k � 1; 2; 3 connect each site
of the �A lattice to the three adjacent sites of �B. The
fermionic operators ar and br�sk annihilate electrons in the
sublattices �A and �B, respectively. At half filling, gra-
phene possesses two independent Fermi points at K� �
�� 4

3
��
3
p
�
; 0� where the positive and negative energy bands

touch in conical singularities. For momenta near these
Fermi points we can replace the full Hamiltonian with a
Dirac approximation

 Ĥ �
Z

�y�r�H��r�d2r; (2)

where H is the corresponding one-particle Dirac
Hamiltonian and the spinor is given by ��r�T �
�ua; ub; va; vb� where the a, b indices correspond to the
�A and �B sublattices and u, v correspond to the two
Fermi points. For the particular case of the Kekulé distor-
tion given by

 �tr;k �
1
3��r�e

iK��skei�K��K���r � c:c:; (3)
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the Dirac Hamiltonian takes the form [5]

 H �
� � p� �1�
�1�� �� � p

� �
; (4)

where p � �i@, and we have taken an overall constant to
unity. Here, � � ��1; �2� are the two-by-two Pauli matri-
ces. Transformations of the form �i 	 1 act on the Fermi
point components (u; v), while transformations of the form
1 	 �j act on the sublattice indices (a; b). Here we take �
to be initially real everywhere.

We wish to compactify the Kekulé distorted graphene
sheet into a surface with the topology of a sphere. To do
this it helps to make a change of basis. We exchange the
role of A and B at the K� Fermi point and rotate the
reference frame at the K� point by � angle so that it
coincides with the frame at K�. These two transformations
are effected by conjugating with the SU(4) matrix�1 
 �3.
To introduce curvature, we observe that the Kekulé dis-
tortion leaves every third hexagon with no double bonds.
We select one of these hexagons and, starting from its
geometrical center, excise a wedge of opening angle
�=3, the cuts passing through the centers of two lines of
bonds. We then reconnect the dangling bonds to form a
seam. This operation leaves us with a conical curvature
singularity centered on a pentagon, but does not cause a
dislocation in the pattern of double bonds. It does, how-
ever, introduce frustration in the electron wave functions.
This is because the identity of the A and B lattices is
interchanged across the seam, and because an electron
with wave function located near one Dirac point sees itself
across the seam as a wave function belonging to the other
Dirac point. To make the spinors continuous across the cut
we therefore introduce a gauge-twist transformation

 �! U�; with U � exp
�
�i

Z
�ea� q� � dr

�
(5)

when the spinor is transported around the apex of the cone.
Here a � A��2 	 1� is the non-Abelian field with circu-
lation around the pentagonal plaquette e

H
a � dr �

�=2��2 	 1� and q is the spin connection with circulationH
q � dr � ��=6�1 	 �3�. Taking into account that

Uy@iU � �ieAi��2 	 1� � iqi we have that the momen-
tum operator becomes p! �i�r� ieA� with r � @�
iq. We can diagonalize the gauge field and simplify the
Dirac matrices by the rotation �e�i�1�=4 	 1��1 
 �3� giv-
ing finally

 HA �
�iei��i�r� ieA� �

�� iei��i�r� ieA�

 !
; (6)

where the zweibeine, ei� are introduced to make the
Hamiltonian covariant in the induced curved space with
metric g�� � ei�e

i
��ij, where �ij is the flat metric. Note

that, due to the geometric distortion, the initially real � has
now acquired a phase factor of the form exp�i2e

R
A�.

Hamiltonian (6) corresponds to a spinor field defined on
a curved manifold coupled to a chiral gauge potential. We
observe that the gauge invariant Dirac operator, HA, that
we have derived coincides with the one recently written
down by Jackiw and Pi [6]. In our case the pentagon is
threaded by a quarter unit of gauge flux, and the phase of
the scalar field � winds through only � as we circle the
defect. Each pentagon is therefore a rather singular ‘‘half-
vortex.’’ To make the Higgs field smooth, we would need to
join pairs of vortices and switch off the Kekulé distortion
along a line joining them [see Figs. 1(a) and 1(b)]. We will
discuss the significance of this issue later.

We constructed our Hamiltonian (4) for the case of a
single conical deformation. In order to make a surface with
the topology of a sphere we formally need to introduce 12
pentagonal defects. Can we extend our surgical construc-
tion globally? It is known that we obtain a consistent
assignment of double and single bonds composing a
dislocation-free Kekulé structure (a Fries structure) if
and only if the fullerene belongs to the family C60�6k, k �
0; 1; . . . that is obtained from a parent C20�2k molecule by
‘‘leapfrog’’ inflation [23]. This is exactly the family of
molecules we obtain by the previous process, where each
of the 12 pentagonal deformations is surrounded by hex-
agons each possessing three double bonds. The total gauge
flux through the 12 pentagons is 3� 2�, and the total
winding number of the Higgs field is six, composed of
12 half-vortices. This can be equivalently described by a
monopole sitting inside the molecule providing the net
vortex flux [8,9].

At this point it is convenient to study the transformation
properties of the one-particle Dirac Hamiltonian HA. First,
note that the different chiralities in the Dirac Hamiltonian
correspond to normalized solutions, which have their sup-
port on the different triangular sublattices of the honey-
comb lattice. By comparison with H we deduce that the
Dirac Hamiltonian HA acts on the vector (ub, ua, va, vb).
For convenience we change basis so that the spinor is given
by (ua, va, ub, vb). Then one has �5HA�5 � �HA where
�5 � �3 	 1. This transformation maps positive energy
eigenvectors of HA to negative ones, i.e., �5�E�r� �
��E�r�, while zero energy modes are left unpaired. This

(a) (b) (c)

FIG. 1 (color online). The coupling configuration of the C60

molecule, where vortices reside on the pentagons. (a) The
Kekulé distortion. (b) Cuts between vortices are introduced by
replacing a double bond with single ones. (c) An enlargement of
the vortices is introduced by removing all double bonds con-
nected to the pentagons. For C60 this removes all double bonds.
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property is known as sublattice symmetry and it gives rise
to charge fractionalization and the emergence of zero
modes when the scalar field has nontrivial vorticity [5].
Furthermore, by defining the operator �1 � 1 	 �1 we can
show that �1HA�1 � H�A. As a consequence [24] the
eigenfunctions of HA satisfy �1� � �� and in spinor
components u�a � va and u�b � vb. This symmetry is
known as the time reversal symmetry and it is present
due to the choice of real hopping elements in Hamil-
tonian (1).

We wish to apply the index theorem of Jackiw and Rossi
[21] and Weinberg [22] to our problem. This theorem was
first introduced to study zero modes in a relativistic ana-
logue of superconducting vortices which is exactly the case
here. As we shall see the number of zero modes provided
from the index theorem can be computed by either count-
ing the number of gauge-field flux units or by counting the
net winding number of the Higgs field—the two numbers
necessarily being equal because of the topology of the
gauge bundle.

The sublattice symmetry dictates that the non-zero-
energy eigenfunctions come in �E pairs, while zero-
energy eigenfunctions (zero modes) can be chosen to be
eigenvectors of �5. Thus, we can arrange the zero modes in
terms of their chirality. Suppose that there are n� zero
modes with �5 eigenvalue�1 and n� with eigenvalue�1.

Weinberg shows [22] that the index�HDirac��
def
n� � n� is

given by

 index �HDirac� �
e
�

Z
�
Fd2r�

1

4�i

I
@�
dr

�
��D���D��

j�j2

�
1

2�

I
@�
dr � @ arg�: (7)

Here

 D � � �@� 2ieA��; D�� � �@� 2ieA���;

and the @� integral is to be taken over a contour surround-
ing all the vortices. It is possible to use the consistency
equation, �@� 2ieA�� � 0, of the scalar field that follows
from Ai�r� � @i��r�. Then, it is easy to see that the index
can be written in terms of the gauge field

 index �HDirac� �
e
�

Z
�
Fd2r: (8)

From this form of the index of HDirac we deduce that one
can take the scalar field continuously to zero, �! 0,
without changing the number of zero modes.

As derived by Weinberg, the index theorem applies to
the case of open boundary conditions. To apply the theo-
rem to a spherical fullerene with Hamiltonian HA requires
the following step. We recognize that there is a net gauge-
field flux through the sphere, and so the gauge and asso-

ciated Higgs bundle are nontrivially twisted. We must
therefore introduce two hemispherical patches and sew
them together with a gauge transformation that identifies
@� ieA in the upper hemisphere with eie	�@� ieA�e�ie	

in the lower, and similarly identifies � in the upper hemi-
sphere with e2ie	� in the lower. The phase e	 in the U(1)
group element eie	 will wind through

R
S2 eF � 6� as we

encircle the common boundary of the hemispheres. It is the
twisting of the Higgs field that allows us to have a net
number (six) of Higgs field vortices. If the field � were an
ordinary scalar instead of a section of a twisted bundle, the
net vortex number would necessarily be zero. Thus, the
index theorem demonstrates that the mass term appearing
due to the Kekulé distortion does not actually destroy the
zero modes.

We have seen that the introduction of curvature through
pentagonal defects automatically turns Kekulé distorted
planar graphene into a gauge theory of the form introduced
by Jackiw and Pi. The defects form half-vortices in the
Higgs field corresponding to the Kekulé distortion. We can
apply the Jackiw-Rossi-Weinberg index theorem to find a
lower bound on the number of low energy states on the
curved surface. When applied to the leapfrog fullerenes
C60�6k we find that there should be six low-lying modes
that are insensitive to the magnitude of the Kekulé distor-
tion. The singular nature of the vortices is a problem
however, and numerical investigation of the leapfrog mole-
cules C3n�60 with a uniform distortion shows six low-lying
modes that do depend on the distortion [Figs. 2(a) and
3(a)]. This is not surprising as in this form the Higgs field
is discontinuous due to its half-vorticity at each pentagon.
To rectify it one must allow the vortices to pair up by
joining them with cuts, that is, regions with � � 0.
Moreover, the energy contribution from the scalar field �
is given by

R
d22rfjD�j2 � V�����g, where V is a func-

tion with a minimum at �0 with V 0���0�0� � 0 that en-
forces � to acquire mass. To avoid divergences of the
energy the scalar field [6] has to vanish polynomially as
r! 0. This forces us to consider vortices with enlarged
size. As we shall see in the following these modifications in
the configuration of the Kekulé distortion of a fullerene
molecule provide a spectrum that is in agreement with the
prediction of the index theorem.
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FIG. 2 (color online). The spectrum of the C60 molecule as a
function of the double bond coupling h with single bond cou-
pling equal to 1. There are six modes (two triplets) that are near
zero energy. (a) With Kekulé distortion. (b) With cuts between
pairs of vortices. (c) With enlarged vortices, where all double
bonds are removed.
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Figures 2 and 3 depict the spectrum of C60 and C180

molecules with Kekulé distortion for the various cases of
uniform and smoothed Higgs fields. The coupling of the
single bond has been set to 1 and that of the double bonds is
denoted by h. The case of uniform Kekulé distortion,
presented in Fig. 1(a), has been modified in order to ensure
smoothness of the effective Higgs field. For that we first
introduced cuts among the vortices, i.e., we removed
double bonds along paths that connect pairs of vertices,
as seen in Fig. 1(b). Moreover, we enlarged the size of the
vortices by removing double bonds from the links attached
to the pentagons, as seen in Fig. 1(c). When the last process
is performed on the C60 molecule it removes all double
bonds due to its small size.

As expected from the index theorem there are six modes
with near zero energy when the coupling h is varied. While
for the case of uniform Kekulé distortion these modes seem
to be sensitive to variations of h [see Figs. 2(a) and 3(a)],
this is rectified by introducing cuts and by enlarging the
vortices. These processes make the Higgs field continuous
and the energy of the low-lying modes becomes even
closer to zero with an energy that is insensitive to variations
of h. Indeed, in Figs. 2(c) and 3(c) there are six low-lying
modes which are to a good degree insensitive to variations
of h. The difference of their energy from being exactly zero
is due to the small size of the system and it is expected to
converge to zero when larger molecules are employed [8].

To summarize, we explicitly demonstrated that the ef-
fective gauge field induced in a graphene sheet, when it is
geometrically deformed, couples nontrivially to the Higgs
field induced from a distortion in the tunneling couplings.
As a result, the fullerenelike molecules have six half-
vortices that are fractionally charged [5] giving a natural
setting where this topological effect appears. By employ-
ing the index theorem we demonstrated that there should
be one zero mode for each pair of such vortices. While the
effective gauge field is responsible for the presence of the
zero modes, the scalar field assures that the corresponding
degenerate states are not locally distinguishable, implying
their topological robustness (topological degeneracy). In

the case of fullerenelike molecules, a study of the corre-
sponding low-lying states showed that a Kekulé distortion
is energetically favorable, actually reducing the overall
energy of the electrons.
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FIG. 3 (color online). The spectrum of the C180 molecule:
(a) with Kekulé distortion, (b) with cuts between pairs of
vortices, (c) with enlarged vortices.

PRL 100, 156806 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 APRIL 2008

156806-4


