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We study the properties of two dimensional topological spin Hall insulators which arise through
spontaneous breakdown of spin symmetry in systems that are spin rotation invariant. Such a phase breaks
spin rotation but not time reversal symmetry and has a vector order parameter. Skyrmion configurations in
this vector order parameter are shown to have an electric charge that is twice the electron charge. When
the spin Hall order is destroyed by condensation of Skyrmions superconductivity results. This may happen
either through doping or at fixed filling by tuning interactions to close the Skyrmion gap. In the latter case
the superconductor–spin Hall insulator quantum phase transition can be second order even though the two
phases break distinct symmetries.
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Several recent theoretical [1–3] and experimental [4]
papers have discussed a phenomenon known as the quan-
tum spin Hall effect in two dimensional insulators. In such
an insulator an applied electric field leads to a quantized
spin current in the transverse direction. Clearly the effect
cannot occur if SU�2� spin rotation symmetry is preserved
in the low energy theory of the insulator. Initial discussions
of the spin Hall effect focused on situations where the
microscopic Hamiltonian has spin-orbit interactions which
are such that only the Sz component of the spin is con-
served. Alternately one can contemplate phases of matter
where full SU�2� spin rotation symmetry is present at the
microscopic level but is spontaneously broken in the
ground state in a manner that enables a spin Hall effect.
Such phases were discussed recently in Ref. [5].

In this Letter we study various aspects of the second kind
of spin Hall insulator where the spin symmetry is sponta-
neously broken. The broken spin symmetry is character-
ized by a vector order parameter which we will denote ~N.
Consequently in two space dimensions Skyrmion topologi-
cal defects are allowed. We show that the quantized spin
Hall effect leads (with some restrictions discussed below)
to a quantized electric charge 2e on the Skyrmion. Here e is
the electron charge. This has some remarkable consequen-
ces. First, so long as the Skyrmion energy is much smaller
than the energy to excite individual pairs of electrons, the
Skyrmion number will be conserved due to charge conser-
vation. Thus space-time hedgehog configurations of ~N are
forbidden [6]. Destruction of the spin Hall order by con-
densation of Skyrmions then very simply leads to a gapped
s-wave superconductor. This may be done either by doping
into the spin Hall insulator or by closing the Skyrmion gap
at fixed density by tuning interactions. In the latter case the
resulting superconductor–spin Hall insulator phase transi-
tion can be second order despite their rather different
broken symmetries. This provides a new example of a
Landau-forbidden deconfined quantum critical point [7].

These results are best illustrated in the context of models
of spinful electrons cr� hopping on a honeycomb lattice at
half-filling:

 H �
X
hrr0i

� t�cyr cr0 � H:c:� �Hint; (1)

where r, r0 are nearest neighbor sites. Hint contains various
short-ranged interactions that preserve spin rotation and
time reversal symmetries. Specific interactions that could
stabilize the spin Hall insulating phase are discussed in
Ref. [5]. In the absence of Hint, the band structure consists
of two distinct Fermi points which can be chosen as K �
��4�=3

���
3
p
; 0�where the lattice constant is chosen as unity.

Expanding the microscopic electron annihilation operator
cr about these nodes in terms of continuum field operators
ci��, the low energy Dirac Hamiltonian is obtained as

 H � �
3t
2

Z
d2kcy���x�zkx � �yky�c: (2)

Here i � L=R is a sublattice index, � � �=� the node
index, and � the spin. The corresponding Pauli matrices
are denoted �, �, and �, respectively. Further, the trans-
formation c� � �y � enables writing the Hamiltonian in a
manifestly symmetric form,

 H � �
3t
2

Z
d2k y�kx�x � ky�y� : (3)

The corresponding action (in real space) is

 S �
Z
d3x � ��i��@�� : (4)

Here � � �, x, y with � being imaginary time, � �
�i y�z, and �0, �x, �y � �z, �y, ��x. We have rescaled
space-time to set the Dirac velocity to 1.

Consider a phase where the interaction Hint leads to a
nonzero expectation value for the operator � � , say along
the ẑ direction in the spin space:
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 h � � i � ~N � Nzẑ: (5)

Within a mean field (MF) description this leads to a mass
for the low energy Dirac fermions that is opposite for " and
# spin:

 SMF �
Z
d3x � ��i��@� � im�

z� ; (6)

where the mass m � �Nz with � determined by the inter-
actions that lead to this order. At the mean field level this is
identical to the model discussed in Ref. [1] for the quantum
spin Hall effect. It breaks spin rotation but not time reversal
symmetry. In a sample with a boundary, an electric poten-
tial difference V applied between the right and left edge
leads to a pair of propagating edge states with opposite spin
[1–3]. Each spin species carries a nonvanishing charge
current of magnitude e2

h V transverse to the electric field
in opposite directions. This corresponds to a spin Hall
conductivity �sxy �

2e2

h �
@=2
e � � e=2�.

It is useful to characterize the spin Hall effect in terms of
the response to two different external gauge fields Ac and
As which couple to spin and charge currents, respectively.
Consider the mean field action in the presence of these
gauge fields
 

SMF�Ac; As	 �
Z
d3x � 

�
��

�
�i@� � Ac� �

�z

2
As�

��
 

� im � �z (7)

in the units e � @ � 1. When the fermions are integrated
out, a nonvanishing transverse spin Hall conductivity of
magnitude 1=2� implies that the low energy effective
action for the gauge fields is given by

 Seff �
i

2�

Z
d3x��	�Ac�@	A

s
�: (8)

Consider now the effect of fluctuations. These may be
usefully discussed by considering the Dirac action in the
presence of a fluctuating unit vector field N̂ describing the
orientation of the spin Hall order parameter:

 S �
Z
d3x � ��i��@� � im ~� 
 N̂� : (9)

We may now integrate out the fermions. In the limit of
large mass m the result is a nonlinear sigma model:

 S �
Z
d3x

1

g
�@�N̂�2 � . . . (10)

with ‘‘stiffness’’ 1
g� jmj. The ellipses represent higher

order terms in the 1=m expansion. Clearly in the ordered
phase there will be two gapless linear dispersing Goldstone
modes associated with the broken spin symmetry.

The other class of excitations associated with the vector
order parameter N̂ are Skyrmion configurations. The quan-
tum numbers of a Skyrmion whose size is much bigger

than the length scale 1=m can be conveniently discussed
within an adiabatic approach where such a Skyrmion is
slowly built up from the ground state. We now show that
such a ‘‘fat’’ Skyrmion has electric charge 2.

To see this most simply, lets consider the Dirac action
Eq. (9) in the presence of a static background configuration
of the N̂ field that corresponds to a single Skyrmion. An
example is the configuration

 N̂�r; 
� � �sin���r�� cos�
�; sin���r�� sin�
�; cos���r��	

(11)

with the boundary conditions ��r � 0� � 0 and ��r!
1� � �. Here (r, 
) are polar coordinates for two dimen-
sional space. This field configuration corresponds to a
Skyrmion with Pontryagin index one. Rotate the N̂ vector
field to the ẑ direction by a unitary transformation U at all
points in space: Uy� ~�:N̂�U � �z. Further, one may define
 � U 0 so that Eq. (9) becomes

 S �
Z
d3x � 0�����i@� � B�� � im�

z	 0 (12)

where B� � �iUy@�U. One readily finds that in the far
field limit ~B�r! 1; 
� ! �z ê
r where ê
 is the unit vector
along 
 direction. Therefore a Skyrmion with unit
Pontryagin index induces a spin gauge field ~As � 2ê
=r.
The total flux of this gauge field is 4� which remains
invariant under smooth deformations of the N̂ field (which
does not change the Skyrmion number).

Let us gradually build in a Skyrmion configuration by
starting from the ground state. By the above argument, this
threads in a spin gauge flux of 4� for As. Because of the
spin Hall effect of the mean field state described above, this
would result in a flow of electric current of magnitude jc �
1

2�
@As
@t in the radial direction. The total charge transferred

from the center of the sample to the boundary during the
process equals Qc �

R
C j

crd
 where the contour C is a
circle located near infinity. This then leads to a charge
Qc � 2e associated with the Skyrmion. Thus a Skyrmion
with Pontryagin index one carries an electrical charge 2e.

This physical argument is confirmed by a more sophis-
ticated analysis which carefully integrates out the Dirac
fermion fields in the presence of an external charge gauge
field. Specifically, we consider

 S�Ac	 �
Z
d3x � �����i@� � A

c
�� � im � ~� 
 ~N	 :

(13)

Integrating out the fermions and using the large mass
expansion yields [8,9]

 S �
Z
d3x

1

g
�@�N�

2 � 2iAc�J
T
� (14)

where JT� �
1

8� �
�	� ~N 
 @	 ~N � @� ~N is the topological cur-

rent whose time component equals the Skyrmion density
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associated with the order parameter field [10]. It follows
that the Skyrmion carries charge which is given by

 Qc
Skyrmion � 2e

Z
dxdy

1

8�
�0	� ~N 
 @	 ~N � @� ~N: (15)

Thus one again reaches the conclusion that a Skyrmion
with Pontryagin index 1 carries an electric charge two.

It is important to emphasize that both the adiabatic
argument and the field theoretic derivation above are really
valid only for fat Skyrmions with size much bigger than
1=m. It is precisely such fat Skyrmions that are important
for our considerations below.

The electric charge of the Skyrmions has profound
implications for quantum phase transitions out of the spin
Hall insulator. First, if the energy of a fat Skyrmion is much
smaller than the energy of individual pairs of electrons,
then the Skyrmion number is conserved. Thus hedgehog
configurations of the N̂ vector in space-time (which corre-
spond to events that change the Pontryagin index) are
prohibited. Further, in the absence of any topological terms
in the effective action for the N̂ field, the Skyrmions will be
bosons [10]. Consider therefore the result of condensing
the Skyrmions by tuning the interactions in Hint while
keeping the electron density fixed. Because of the charge
on the Skyrmions the result will be a superconductor. This
superconductor will have a single electron gap and flux
quantization in units of hc2e . Indeed it is an ordinary s-wave
superconductor.

Remarkably the quantum phase transition between the
spin Hall insulator and the superconductor can be second
order. This is despite the rather different broken symme-
tries in the two phases. This is because the Skyrmion
condensation transition can simply be understood as the
phase transition of an O�3� vector model in the absence of
hedgehogs. This is conveniently described in the CP1

formulation of the N̂ field by writing N̂ � zy ~�z with z a
two component complex spinon field:

 Seff �
1

g

Z
d3xj��i@� � a��zj2: (16)

Here z � �z1; z2� are coupled to an internal gauge field
a� � �iz

y@�z. The Skyrmion number Q is simply given
by

 Q �
1

2�

Z
d2x�0�	@�a	: (17)

Since the Skyrmion number is proportional to the flux of
the CP1 gauge field, a� of Eq. (17) must be regarded as
noncompact, and the phase transition is described by that
in the noncompact CP1 model [11] (NCCP1).

Exactly the same field theory describes the deconfined
quantum critical point separating Néel and valence bond
solid (VBS) phases of insulating square lattice quantum
antiferromagnets [7]. However there is an important dif-
ference: for the Néel-VBS transition quadrupled hedge-

hogs are actually allowed but have been argued to be
irrelevant at the critical fixed point of the NCCP1 model.
They are, however, relevant at the paramagnetic ‘‘free
photon’’ fixed point. This leads to the appearance of two
diverging length scales at the Néel-VBS transition. In
contrast, in the present problem the Skyrmion number
conservation is an exact symmetry at energy scales below
the single electron gap, which is large and finite in both
phases and at the transition. Thus a suitable theory that
captures the low energy physics of both phases and their
transition should simply ignore all hedgehogs. Con-
sequently there is only a single divergent length or energy
scale at the deconfined critical point separating the spin
Hall insulator from the superconductor.

The competition between the spin Hall order and the
superconducting order can also be fruitfully described in a
different manner that sheds further light on the role played
by the quantum nature of the topological defects near the
phase transition. We combine the three component spin
Hall order parameter ~N with the two component super-
conducting (SC) order parameter  SC into a five compo-
nent ‘‘superspin’’ vector �a � �N

x; Ny; Nz;Re SC;
Im SC�, and impose a unit length constraint on �a, i.e.,P5
a�1 �a�a � 1. What is the structure of a ‘‘sigma model’’

that describes the dynamics of �a? This question may
again be answered by coupling the underlying Dirac theory
to this superspin vector and integrating out the fermions.
Specifically we consider the Dirac action

 S �
Z
d3x � ��i��@� � im ~� 
 ~N� 

� im� SC 
T�y�y�y � c:c:� (18)

where the last term indicates the coupling to the super-
conducting order parameter  SC / h 

T�y�y�y i. It is
potent to make a unitary transformation on the fermions
in the  basis as ~ � ei�

x�=4 and expand ~ in its
Majorana components ~ � �1 � i�2. In the � basis the
kinetic part of the Dirac action has manifest SO�8� sym-
metry under rotations of all 8 components (2 spin, 2 node,
and 2 Majorana indices). The spin Hall order parameter
is given as f�T�y�x�;�T�y�yy�; �T�y�z�g while
the s-wave SC order parameter has the form
f�T�y�y�yx�; �T�y�y�yz�g. Here � are Pauli matri-
ces acting on the Majorana index. These five components
together transform as a vector under an SO�5� subgroup of
SO�8�. This algebraic structure largely determines impor-
tant features of the effective sigma model that describes the
fluctuations of the�a when the fermions are integrated out.
Within the large mass expansion the techniques of Ref. [8]
lead to an SO�5� action with a Wess-Zumino-Witten
(WZW) term at level 1,

 S �
Z
d3x

1

2G
�@i�a�

2 � 2�i�� ~�	: (19)
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The WZW term � is defined as follows. The field �a
defines a map from space-time S3 to S4. � is the ratio of the
volume in S4 traced out by �a to the total volume of S4.
Specifically, let �̂�x; u� be any smooth extension of �̂�x�
such that �̂�x; 0� � �1; 0; 0; 0; 0� and �̂�x; 1� � �̂�x�. Then

 � �
�abcde

Area�S4�

Z 1

0
du

Z
d3x�a@x�b@y�c@��d@u�e:

(20)

The presence of this ‘‘topological term’’ crucially alters the
physics from naive Landau-like descriptions of the com-
petition between the two different orders. Parenthetically
we note that the action above must be supplemented with
some anisotropy between the ~N and  SC which breaks the
SO�5� symmetry down to SO�3� �U�1�. The SO�3� cor-
responds to spin rotations and the U�1� to charge conser-
vation symmetry. Exactly the same sigma model with the
WZW term also describes [12,13] the Néel-VBS transition
of insulating quantum magnets in agreement with our
previous identification.

The physical implications of the WZW term are brought
out by the following instructive calculation. Consider a
hc=2e vortex defect in the superconducting state. In such
a configuration the five component unit vector will point
along the 4,5 directions far from the vortex core but will
point along the 1,2,3 direction in the core. Specifically,
consider a configuration [we use polar coordinates (r, 
)
for two dimensional space and � for time]
 

�̂�r; 
; �; u� � �sin���r; u��N̂��; u�; cos���r; u�� cos�
�;

cos���r; u�� sin�
�	 (21)

with N̂2 � 1. Choosing ��r � 0; u� � �=2, ��r �
1; u� � 0 8 u � 0, and ��r; 0� � �=2, this configuration
indeed describes a static superconducting vortex where �̂
points along the ~N direction in the core. We have allowed
the unit vector N̂ in the core to have time dependence. The
integrals defining � are readily evaluated for this configu-
ration and lead to the result

 � �
1

4�

Z
d�duN̂ 
 @�N̂ � @uN̂: (22)

This is precisely the quantum Berry phase for a spin-1=2
object. Thus we see that close to the transition the super-
conducting vortices behave as spinons. Condensing the
vortices destroys the superconducting order but at the
same time leads to condensation of the spin Hall order.
This is the mechanism for the Landau-forbidden transition.
The arguments of Ref. [14] now establish the equivalence
of the sigma model to the NCCP1 field theory, and the
superconducting vortices are directly identified with the
CP1 spinons z.

Finally, we consider the result of doping the spin Hall
insulator, focusing again on the situation where the energy

of a fat Skyrmion is much smaller than the energy gap of
individual electrons. Then the doping will be accommo-
dated by the introduction of a finite density of Skyrmions
into the system. At very low doping a Skyrmion crystal will
presumably be stabilized, but with increasing doping a
translation invariant Skyrmion condensate is expected.
This will be a superconducting phase with no broken
spin rotation symmetry.

The route to superconductivity discussed in this Letter is
rather different from two common theoretical mecha-
nisms—phonon or other boson mediated pairing of elec-
trons, or resonating valence bond pairing originating from
superexchange in a Mott insulator. Rather it involves con-
densation of charged solitons of a different broken sym-
metry, namely, the spin Hall order. Similar phenomena
have previously been considered in field theoretic contexts
[15], and are known as topological superconductivity.
Superconductivity arising from the quantum spin Hall state
thus provides a nice realization of a certain kind of topo-
logical mechanism for superconductivity.
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