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We consider extended Hubbard models with repulsive interactions on a honeycomb lattice, and the
transitions from the semimetal to Mott insulating phases at half-filling. Because of the frustrated nature of
the second-neighbor interactions, topological Mott phases displaying the quantum Hall and the quantum
spin Hall effects are found for spinless and spin fermion models, respectively. The mean-field phase
diagram is presented and the fluctuations are treated within the random phase approximation.
Renormalization group analysis shows that these states can be favored over the topologically trivial
Mott insulating states.
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Introduction.—Partly motivated by the discovery of the
high Tc superconductivity, the study of Mott insulators has
attracted great attention in recent years. Defined in a gen-
eral sense, interactions drive a quantum phase transition
from a metallic to an insulating ground state in these
systems. Most Mott insulators found in nature also have
conventional order parameters, describing, for example,
the charge-density-wave (CDW) or the spin-density-wave
(SDW) orders. However, Mott insulators with exotic
ground states, such as the current carrying ground states
have also been proposed theoretically [1– 4]. In parallel
with the study of strongly correlated systems, there has
recently been a growing interest in realizing topologically
nontrivial states of matter in band insulators. In the quan-
tum anomalous Hall (QAH) insulator [5,6], the ground
state breaks time-reversal symmetry but does not break
the lattice translational symmetry. The ground state has a
bulk insulating gap, but has chiral edge states. In the
quantum spin Hall (QSH) insulator [7–9], the ground state
does not break time-reversal symmetry, has a bulk insulat-
ing gap, but has helical edge states, where electrons with
the opposite spins counterpropagate. The QSH state has
recently been predicted theoretically [9] and observed
experimentally in HgTe quantum wells [10].

Given the tremendous interest in finding Mott insulators
with exotic ground states, and the recent discovery of the
topologically nontrivial band insulators, it is natural to ask
whether one can find examples of topological Mott insu-
lators, which we define as states with bulk insulating gaps
driven by the interaction, and inside which lie topologi-
cally protected edge states. Furthermore, electronic states
in the Mott insulator phases are characterized by topologi-
cal invariants, namely, the U�1� Chern number [11] in the
case of the QAH state, and the Z2 invariant [12] in the case
of the QSH state. In this Letter, we report on the first
example of such a case by systematically studying
Hubbard models with repulsive interactions on a two-
dimensional honeycomb lattice. The repulsive honeycomb
Hubbard model was studied in the context of antiferro-
magnetism using quantum Monte Carlo simulations [13]

and is also a possible model for a spin liquid [14]. Here, we
consider further neighbor repulsion and demonstrate that
topological Mott phases displaying the QAH and the QSH
effects are generated dynamically in this system.

Spinless fermions and the QAH state.—The model
Hamiltonian for spinless fermions with nearest-neighbor
and next-neighbor interactions is written as

 H � �
X
hiji

t�cyi cj � H:c:� � V1

X
hi;ji

�ni � 1��nj � 1�

� V2

X
hhi;jii

�ni � 1��nj � 1� ��
�X

i

ni � N
�
; (1)

where V1 and V2 are nearest-neighbor and next-neighbor
repulsions, respectively. Since the honeycomb lattice is
bipartite, consisting of two triangular sublattices (referred
to here as A and B), nearest-neighbor repulsion will fa-
vor a CDW phase with an order parameter � � 1

2 �

�hcyiAciAi � hc
y
iBciBi� that breaks a discrete (inversion) sym-

metry. However, since the second-neighbor interactions
within the same sublattice are frustrated, CDW order will
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FIG. 1. Interactions considered in our model Hamiltonian
(leftmost plaquette), Eq. (1). Various order parameters are shown
for the A sublattice (open circles) and for the B sublattice (filled
circles) in the middle and right plaquettes. The QAH-QSH order
parameters �A, �B are complex 4-vectors associated with the
directed second-neighbor links defined by bi. In the case of
spinless fermions, �A and �B are complex scalars.

PRL 100, 156401 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 APRIL 2008

0031-9007=08=100(15)=156401(4) 156401-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.156401


be suppressed; instead, we consider the possibility of gen-
erating bond order by defining the following order parame-
ter for i, j next nearest neighbors: �ij � ��ji � hc

y
i cji. Let

a1, a2, a3 be the nearest-neighbor displacements from a B
site to an A site such that z � a1 � a2 is positive. We also
define the displacements b1 � a2 � a3, b2 � a3 � a1,
etc., which connect two neighboring sites on the same
sublattice (Fig. 1). A translational and rotational invariant
ansatz of �ij is chosen as

 �i;i�bs �

�
�A � j�jei�A; i 2 A
�B � j�je

i�B; i 2 B
; (2)

which are complex scalars that live along the directed
second-neighbor links. The real and imaginary parts of
�ij break different discrete symmetries and are thus dis-
tinct order parameters: Re��ij� breaks particle-hole sym-
metry, Im��ij� breaks time-reversal symmetry, and both
break the C6v point-group symmetry when �A ��B � 0.

Because of translational symmetry, the mean-field free-
energy at T � 0 is readily obtained:
 

F��; �; ��;�� � �
X
k

����������������������������������������������������������������������
jt�k�j2 � �V1�� 2V2j�jSk� ��S��

2
q

� 3L2�V1�
2 � 2V2j�j

2�: (3)

Here, t�k� �
P3
n�1 exp�ik � an�, �� � ��A ��B�=2, � �

��A ��B�=2, Sk� �� �
P3
n�1 sin�k � bn � ���, S� � sin�.

Thus, the next-neighbor hopping amplitudes are purely real
only when both � � 0 and �� � 0.

When both � and � � 0, and at half-filling, the system is
a semimetal with two Fermi pointsK	 that obeyK	 � bi �
	2�=3 and the density of states vanishes linearly; the
dispersion in the vicinity of these so-called Dirac points
is governed by a 2D massless Dirac Hamiltonian in k
space. The CDW phase corresponds to an ordinary insula-
tor with a gap at the Fermi energy. As for �, its phase
relative to the nearest-neighbor hopping amplitude plays
an important role in determining its properties: while a
nonzero Re���merely shifts the energy of the Dirac points,
a nonzero imaginary part Im��� opens a gap at the Fermi
points. Thus, when the system remains at half-filling, it is
more favorable to develop purely imaginary next-neighbor
hopping amplitudes; such a configuration corresponds to a
phase with spontaneously broken time-reversal symmetry.

To see whether such a phase can be favored, we mini-
mize the free-energy and arrive at the following self-
consistent equations:

 � �
1

6L2

X
k

V1�� 2V2�Sk� ��S��������������������������������������������������������������������
jt�k�j2 � �V1�� 2V2�Sk� ��S��

2
q ; (4)
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Sk� ���V1�� 2V2�Sk� ��S���������������������������������������������������������������������
jt�k�j2 � �V1�� 2V2�Sk� ��S��

2
q : (5)

Because of the vanishing density of states near the Fermi

points, there is no instability towards any order with infini-
tesimal interactions. Interestingly, the self-consistent equa-
tion for � shows that a nontrivial solution can occur only
when � � 0, when V1 � 0, beyond a critical value of
V2c > 0, which satisfies

 

1

V2c
�
S2
�

3L2

X
k

S2
k� ��

jtkj
; (6)

a phase in which j�j> 0 , �� � 0, and � � 	�=2 is
favored. Thus, the system acquires purely imaginary
second-neighbor hoppings and breaks time-reversal sym-
metry. In the vicinity of this saddle point, fluctuations in
both �� and � are gapped. This configuration is stable at
finite V1 and thus does not require fine-tuning (see Fig. 2).
The band insulator version of the CDW state was consid-
ered in Ref. [15], while the quantum Hall (QH) state on a
honeycomb lattice was considered in Ref. [5]. The phase
with nonvanishing imaginary � is precisely equivalent to
the model in Ref. [5]. In this phase, the filled band has a
nonzero Chern number [11] and is an integer quantum Hall
effect phase that is realized without Landau levels [5]. QH
states without Landau levels are referred to here as the
QAH states. However, the topologically nontrivial gap for
the QAH state arises here from many-body interactions,
and we shall refer to such states as topological Mott
insulators.

The mean-field phase diagram is shown in Fig. 2. There
is a continuous transition from the semimetal to either the
CDW or the QAH phase, and there is also a first-order
transition from the CDW to the QAH phase that terminates
at a bicritical point. By integrating out the fermionic fields,
it is possible to construct a Landau-Ginzburg (LG) theory
near the semimetallic region. Because of the linear disper-
sion of the Fermi points, the LG free-energy contains
anomalous terms of the form j�j3 and jIm���j3 [16].
Thus, even within mean-field theory, the CDW order pa-
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FIG. 2 (color online). Phase diagram for spinless fermions
(t � 1). The semimetallic (SM) state that occurs at weak cou-
pling is separated from the CDW and the topological QAH states
via a continuous transition. The line separating the QAH and
CDW marks a first-order transition, which terminates at a
bicritical point.
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rameter, for instance, grows as (V1 � V1c) rather than the
usual �V1 � V1c�

1=2 [13].
Spinful fermions and the QSH state.—Next, we take into

account the spin degrees of freedom and include an on-site
Hubbard repulsion in our model Hamiltonian (� � 0):

 

H��
X
hiji�

t�cyi�cj��H:c:��U
X
i

ni"ni#

�V1

X
hi;ji

�ni�1��nj�1��V2

X
hhi;jii

�ni�1��nj�1�; (7)

where ni � ni" � ni#. Since the honeycomb lattice is bi-
partite, on-site repulsion gives rise to a SDW phase at half-
filling; a standard decomposition of the Hubbard term
introduces the SDW order parameter M: M � 1

2 �hSiAi �

hSiBi�. As in the spinless case, nearest-neighbor repulsion
favors a CDW. Since the second-neighbor repulsion is
frustrated, we are again led to the possibility of a topologi-
cal phase similar to the QAH. However, the spin degrees of
freedom introduce two possibilities (translation invariance
along with spin conservation eliminate other possibilities):
(1) two copies of QAH states—i.e. the chirality of the
second-neighbor hopping is the same for each spin projec-
tion, (2) the QSH state, where the chiralities are opposite
for each spin projection. The latter possibility breaks a
continuous global SU�2� symmetry associated with choos-
ing the spin projection axis; however, time-reversal sym-
metry is preserved. The QSH state on the honeycomb
lattice was considered in Ref. [7], where the insulating
gap arises from the microscopic spin-orbit coupling. It
was later shown that the magnitude of the spin-orbit gap
is negligibly small in graphene [17,18]. In our case, how-
ever, the insulating gap is generated dynamically from the
many-body interaction and can be viewed as an example of
dynamic generation of spin-orbit interaction [19].
Introducing the Hubbard-Stratonovich fields (sum over
repeated indices implied) ��ij � cyi��

�
��cj�, � �

0; . . . ; 3, where �� � �1;��, the next-neighbor interac-
tions can be recast using the identity �ni � 1��nj � 1� �

1� 1
2 ��

�
ij�
y��ij. Physically, h�0i � 0 corresponds to the

QAH phase, whereas if one of the vector components
h�ii � 0, then the QSH phase occurs. A translationally
invariant decomposition of the next-neighbor interactions
via h��i;i�bsi � ��ei�

�
A ; i 2 A (and similarly for the other

sublattice) gives rise to a 4� 4 Hamiltonian that is readily
diagonalized in a tensor product basis � 
 �, where � and
� are Pauli matrices in spin and sublattice space, respec-
tively. This way, each phase corresponds to a particular
nonzero expectation value of a fermion bilinearP

~k�
y
~k
d̂� ~k�� ~k, where d̂� ~k� / 	3 for the CDW and QAH,

and d̂� ~k� / �3	3 for SDW and QSH. A detailed and stan-
dard numerical study of the free-energy at T � 0 and its
saddle point solutions produces the phase diagram shown
in Fig. 3. In addition to the ordinary CDW and SDW
insulating phases, there is a phase for V2 >V2c � 1:2t in

which the 4-vector is purely imaginary (as in the spinless
case), collinear, and staggered from one sublattice to the
next: h��ii�bn;Ai � �h�

�
ii�bn;B

i, and both QAH and QSH are
equally favorable ground states, having identical free en-
ergies within mean-field theory. Additionally, there is
never a coexistence of both QAH and QSH phases; indeed,
a Landau-Ginzburg treatment in this region explicitly
shows the absence SO�4� symmetry of the vector ��.
This occurs due to the difference of the manner in which
�0 and ~� are coupled to the fermionic fields—which
favors either a phase with broken Z2 symmetry (QAH) or
with broken SU�2� symmetry, but never both simulta-
neously [16].

Quantum fluctuations, however, lift the mean-field
degeneracy between the QAH and QSH phases. To qua-
dratic order in quantum fluctuations (RPA) about
the QSH phase, we obtain an effective action Seff �P

~k
�
�� ~k;��K��� ~k;��
���� ~k;���, which shows the

presence of six modes (2 longitudinal and 4 transverse
modes), and 2 of the transverse modes correspond to
degenerate Goldstone modes whose dispersion is given

by ��q� �
������������������������������������
jtk�qj

2 � jtktk�qj
q

, which for q small is linear

with velocity v � vf � 3t=2jaj. Thus, the zero-point mo-
tion associated with these gapless modes lowers the free-
energy of the QSH state relative to the QAH state. In the
presence of spin-orbit coupling (SOC), considering for
concreteness the Rashba SOC HR � �R�s� p� � ẑ, the
Goldstone modes become gapped and do not interfere
with the gapless edge excitations. Thus, by breaking the
SU�2� spin symmetry, the Rashba term stabilizes the QSH
phase by ensuring that the only low energy excitations in
the system are the helical edge modes of the QSH phase.

Renormalization Group Analysis.—Next, we go beyond
mean-field theory and RPA using the temperature (T)-flow
functional renormalization group (fRG)[20]. In this
scheme, we discretize the ~k- dependence of the interaction
[21] and consider all possible scattering processes between
a set of initial and final momenta that occur between points
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FIG. 3 (color online). Complete mean-field phase diagram for
the spinful model. The transitions from the semimetal (SM) to
the insulating phases are continuous, whereas transitions be-
tween any two insulating phases are first order.
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on rings around the Dirac points (inset of Fig. 4). As the
temperature T is lowered, a renormalized interaction VT is
obtained by the coupled summation of the T derivatives of
all one-loop channels. Therefore, the method is unbiased
and goes beyond mean-field theory. An ordering tendency
at a finite vector Q can be detected as a growth of the
associated vertex VT . However, we have found that largest
couplings occur at Q � 0, which strongly supports the
mean-field results presented above.

For on-site and nearest-neighbor repulsions U >Uc �
3:8t and V1 > V1c � 1:2t, the flow to strong coupling is
either an SDW instability for dominant U or a CDW
instability for dominant V1, in good agreement with a
1=N study [22] and quantum Monte Carlo calculations
[13,23]. If we include a sufficiently strong second-
neighbor repulsion V2 > 1:6t, there is a leading growth
of the QSH susceptibility. In Figs. 4(a) and 4(b) we com-
pare the T flows of various susceptibilities for V1 >V2 and
for V2 >V1. For the latter case, the QSH susceptibility
grows most strongly toward low T, followed by the QAH
susceptibility, which is consistent with the RPA treatment
of the Goldstone modes in the QSH. The QSH phase
remains stable even when a moderate on-site interaction
of U � t or U � 2t is introduced. Hence the global struc-
ture of the mean-field phase diagram is confirmed by the
fRG results.

Discussion.—We have shown that topological phases
displaying the QAH and QSH effects can be generated
from strong interactions—thus, we refer to these phases
as topological Mott insulators. Both phases are described
by conventional order parameters that develop continu-
ously at the quantum critical phase transition from the
semimetallic state. However, these states are also described
by topological quantum numbers, which jump discontinu-
ously at the transition.

While the topological Mott phases are unlikely to occur
in graphene, the regime V2 > V1, U, where these phases

are likely to occur, could equivalently be realized in a
triangular optical lattice bilayer of dipolar atoms. By ap-
plying a static electric field to control the dipoles [24] and
by varying the spacing between the layers, it is possible to
tune the interactions such that V2 >U, V1; details will be
provided elsewhere [16].

Interesting open issues include understanding coupling
of the gapless bulk Goldstone modes with the gapless edge
degrees of freedom, and the possibility of fractionalized
excitations in these phases.
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FIG. 4 (color online). (a) Data for U � 0, V1 � 1:4t, V2 � 0.
Susceptibilities of each phase vs T are shown: CDW (dash-
dotted line); SDW (dotted line); QAH (solid line); and QSH
(dashed line). (b) Same for U � 0, V1 � 0, V2 � 1:8t (QSH
instability). The QSH phase has a larger susceptibility than
QAH. Inset: fRG phase diagram at U � 0, indicating SM and
insulating regions (CDW dominates at large V1, QSH at large
V2). The color bar corresponds to Tc below which the insulating
phases develop in fRG.
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