
Long Wave–Short Wave Resonance in Nonlinear Negative Refractive Index Media

Aref Chowdhury and John A. Tataronis
Bell Laboratories, Alcatel-Lucent, 600 Mountain Avenue, Murray Hill, New Jersey 07974, USA

(Received 10 December 2007; revised manuscript received 12 February 2008; published 18 April 2008)

We show that long wave–short wave resonance can be achieved in a second-order nonlinear negative
refractive index medium when the short wave lies on the negative index branch. With the medium
exhibiting a second-order nonlinear susceptibility, a number of nonlinear phenomena such as solitary
waves, paired solitons, and periodic wave trains are possible or enhanced through the cascaded second-
order effect. Potential applications include the generation of terahertz waves from optical pulses.
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In recent years, negative refractive index media [1]
under the influence of nonlinearities have stimulated great
interest. Areas of detailed theoretical studies are metama-
terials in a positive nonlinear dielectric [2], second har-
monic generation [3], generalized nonlinear Schrödinger
equation [4], solitons [5,6], nonlinear susceptibilities, and
three- and four-wave mixing and their applications [7].
Experimental realization of second harmonic generation
in a magnetic metamaterial was also recently demonstrated
[8]. Nonlinear metamaterials in the optical regime are very
attractive owing to the availability of high intensity light
sources. Significant experimental progress has been made
in the optical regime with a variety of structures and
negative index wavelengths [9].

In this Letter, we present the nonlinear phenomena of
long wave–short wave (LWSW) resonance in negative
refractive index media. Long wave–short wave resonance
occurs when the group velocity of a short wave (high-
frequency wave) is equal to the phase velocity of a long
wave (low-frequency wave). This resonance can be satis-
fied when the short wave lies on the negative branch of the
dispersion curve. We will see that the governing nonlinear
equations of the wave amplitudes are driven by a pondero-
motive force [10]. However, our work introduces the con-
cept of using a second-order nonlinearity for efficient
resonant coupling, which is different from past work
done in the area of slow light where the ponderomotive
force alone is the local nonlinearity [11,12]. The source of
the second-order nonlinearity in a metamaterial may be
from the background dielectric or from the inherent re-
sponse of the negative index medium [7]. We show that the
governing nonlinear equations have a number of interest-
ing solutions depending on the effective material parame-
ters of the medium. The solutions include solitary waves,
paired solitons, and periodic wave trains. A potential ap-
plication of such a resonance is the generation of terahertz
waves from an input optical wave.

The general theory describing the interaction between
long waves and short waves was first formalized by
Benney [13], but these and related equations appeared
earlier in plasma physics in studies of nonlinear
Langmuir wave phenomena [14,15]. In the field of fluid

mechanics, we refer to research on capillary-gravity and
long gravity waves [16]. Newell [17] studied a broader
class of nonlinear wave equations that are similar to the
LWSW equations and identified those that can be solved
via the inverse scattering technique. Explicit wave solu-
tions of the LWSW equations, including solitons, have
been derived and studied by Ma [18], and Ma and
Redekopp [19]. Finally, Dodd et al. [20], and Moloney
and Newell [21] present expansion methods that can be
used to derive and solve LWSW equations.

Our analysis of nonlinear wave activity in negative index
media focuses on one-dimensional wave propagation par-
allel to the z axis of an �x; y; z� Cartesian coordinate system
with the electric field directed parallel to the x axis. The
time domain nonlinear wave equation that governs the
electric field E�z; t� is given by
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where PNL�z; t� is the second-order nonlinear polarization
given by the integral expression PNL�z; t� �
"0

R
1
�1 d�1

R
1
�1 d�2��2��t � �1; t � �2�E�z; �1�E�z; �2�.

In Eq. (1), "0 is the vacuum permittivity, the electric flux
density D has been related to the electric field E, the
magnetic flux density B has been related to the magnetic
intensity H via convolution integrals, and the integral
kernels ��t� and ���� are, respectively, inverse Fourier
transforms of the frequency-dependent magnetic perme-
ability ��!� and electric susceptibility ��!�. In the ex-
pression for the nonlinear polarization, the ��2��t1; t2� is the
inverse Fourier transform of ��2��!1 �!2; !1; !2�, the
second-order nonlinear susceptibility. Equation (1)
with ��!� � 1 is treated in Ref. [21]. The analytical
techniques introduced in Ref. [21] will be used in this
Letter to explore the consequences of dispersive effects
in both the electric permittivity and magnetic permeability.
We adopt here the expressions for the electric permittivity
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"�!� �� 1� ��1��!�� and ��!� that are used in Ref. [7]
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where �0 is the vacuum permeability, and �!a;!0; !b;��
are characteristic frequencies of the medium. Plane wave
solutions, E�z; t� 	 exp�i�!t� kz��, of LE � 0 are gov-
erned by the dispersion relation k2�!� � !2"�!���!�.
For a given frequency, two signs of the wave number
k�!�, and therefore of the index of refraction n�!�, are
possible. The correct sign is determined by causality,
which is equivalent to the condition that plane waves decay
as z! 1 in the presence of small dissipation. The causal
dispersion diagram calculated with Eq. (2) is shown in
Fig. 1, where �<!0 <!b < !a. For a given wave num-
ber, three modes of plane wave propagation exist. The
central mode, !0 <!<!b, has a negative index of re-
fraction, while each of the upper (!a <!) and lower (0<
!<�) branches has a positive index of refraction. The
negative index branch appears over the frequency range
where "�!� and ��!� are simultaneously negative. If
absorption is introduced in the permittivity and permeabil-
ity, the dispersion curves in Fig. 1 will be altered in two key
ways. First, for real !, the wave number will be complex
with a negative imaginary part, reflecting wave damping.
Second, the positive and negative branches will be joined
by a curve that will exhibit anomalous dispersion.

If PNL�z; t� is retained in Eq. (1), nonlinear mixing of
plane waves is possible. The three-wave mixing process of
frequency down-conversion that we addressed in Ref. [7]
and will develop further in this Letter satisfies the respec-
tive frequency and wave number resonance conditions
!3 � !1 �!2 and k3�!3� � k1�!1� � k2�!2�, where
k�!� � !

����������������������
"�!���!�

p
, waves 1 and 2 lie on the negative

index branch, and wave 3 lies on the low-frequency posi-
tive index branch. The wave numbers k1�!1� and k2�!2�
are negative, and k3�!3� is positive. Let !s be a frequency
between !1 and !2. As !1 and !2 approach !s, !3 can
attain arbitrary small values. It is through this process that
terahertz wave phenomena can be produced via nonlinear
mixing of negative index waves.

It is convenient to express !1 and !2 in terms of !3 and
!s, !1 � !s �!3=2, and !2 � !s �!3=2. The fre-
quency resonance condition is then identically satisfied,
while the momentum resonance condition is

 kNI�!s �!3=2� � kNI�!s �!3=2� � k3�!3�: (3)

Equation (3) is a nonlinear algebraic equation that deter-
mines the central frequency as a function of !3. A numeri-
cal solution of Eq. (3) is presented in Fig. 2 as a plot of !s
vs !3 for � � 0:3!a, !0 � 0:4!a, and !b � 0:9!a.
Each curve is labeled by a value proportional to �k
[ � kNI�!s �!3=2� � kNI�!s �!3=2� � k3�!3�], where
�k represents the wave number mismatch. For exact reso-
nance, �k � 0, the lower curve in Fig. 2 satisfies Eq. (3). If
�k � 0, !s�!3� follows the upper curves.

As !3 ! 0, !1 and !2 approach a common value,
!s�0�. This limit has important implications that we now
explore. For small !3, we expand kNI�!s �!3=2� �
kNI�!s �!3=2� in powers of !3, then substitute the result
in Eq. (3). To lowest order in!3, the resulting expression is
dkNI=d! � k3�!3�=!3 at! � !s as!3 ! 0. At the value
of!s on the negative branch that satisfies this criterion, the
group speed on the negative index branch equals the phase
speed of the wave at the origin on the lower positive index
branch. This condition, which is depicted graphically in
Fig. 1 with tangent lines, is the criterion for the long wave–
short wave resonance [13]. It is a resonance between a low-
frequency mode and two degenerate high-frequency

FIG. 1 (color online). Depiction of LWSW resonance on a
dispersion diagram ! vs k based on Eq. (3) with �<!0 <
!b < !a. The parallel lines show the matching of the group and
phase velocities on the negative and lower branches, respec-
tively.

FIG. 2 (color online). Contour plot of the normalized phase
mismatch (c0�k) with !s and !3 normalized to !a. The lower
curve with �k � 0 is the curve satisfying Eq. (4). The character-
istic frequencies are � � 0:3!a, !0 � 0:4!a, and !b � 0:9!a.
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modes. With Eq. (2) the LWSW criterion reduces to
dkNI

d! �!s� �
1
c
!a!b
!0� . The solution of this equation for !s is

the LWSW frequency, which is !s�0� in Fig. 2.
In the limit of the LWSW resonance, it is useful to

consider the interaction of two wave packets, one packet
propagating in the negative index mode about the LWSW
frequency and the second propagating in the low-frequency
positive index mode. A wave packet is a group of plane
waves with frequencies and wave numbers centered about
and near a central frequency ! and a central wave number
k�!�. The packet waves interfere to produce a plane wave
with a slowly varying envelope given by

 E1�z; t� � A�Z; T� exp�i�!t� kz�� � c:c:; (4)

where Z � �z, T � �t, and � is a small parameter. The
scaled spatial and temporal coordinates imply that deriva-
tives of A�Z; T� with respect to z and t are of order � and
therefore small. By allowing the amplitudes to depend on
multiple spatial scales A�Z; T� � A�Z1; Z2; Z3; . . . ;T�,
where Z1 � �z, Z2 � �2z, Z3 � �3z; . . . , the spatial de-
rivative @A=@Z can be expanded with respect to �,
@A=@Z � @A=@Z1 � �@A=@Z2 � �2@A=@Z3 � . . . .

A solution of Eq. (1) for interacting wave packets is
derived by expanding the electric field E�z; t� in terms of
the small scaling parameter � [21],

 E�z; t� � �E1�z; t� � �2E2�z; t� � �3E3�z; t� . . . ; (5)

where the first-order term E1�z; t� is the wave packet
represented by Eq. (4). The higher-order terms arise from
the nonlinear polarization. Because the nonlinear polariza-
tion is quadratic in the electric field, E2�z; t� can be repre-
sented as a linear superposition of wave packets at zero and

second harmonics of the phase (!t� kz),

 E2�z; t� � D�Z; T� � C�Z; T� exp�i2�!t� kz�� � c:c:;

(6)

where the amplitudes are slowly varying functions of space
and time, D�Z; T� � D�Z1; Z2; Z3; . . . ;T� and C�Z; T� �
C�Z1; Z2; Z3; . . . ;T�. Higher harmonics of (!t� kz) will
appear in the higher-order terms of Eq. (5). Analysis
reveals that A��z; �t� and D��z; �t� are coupled by two
nonlinear partial differential equations, and C��z; �t� is
proportional to A2�Z; T�. In our application, A�z; t� and
D��z; �t� are, respectively, the amplitude of the high-
frequency wave packet on the negative index branch and
the low-frequency wave packet on the lower positive index
branch. Equation (5) is now substituted in Eq. (1) followed
by an expansion of the left and right hand sides with
respect to �. The expansion of the left hand side is

 LE�z; t� � �LE1�z; t� � �2LE2�z; t� � . . . ; (7)

where each factor, LE1�z; t�; LE2�z; t�; . . . , must also be
expanded with respect to �. At order one, E1�z; t� is given
by Eq. (4). The expansion of LE1�z; t� is then

 

LE1�z; t� � �L0�!; k�A� �L1A� �2L2A� . . .�


 exp�i�!t� kz�� � c:c:; (8)

where L0�!; k� � �k
2 �!2"�!���!�, and L1; L2; . . . are

linear differential operators with respect to the scaled
variables (Z1; Z2; . . . ; T). Substitution of Eqs. (7) and (8)
in Eq. (1) yields

 �2LE2 � �
3LE3 . . . � �� exp�i�!t� kz���L0�!; k�A� �L1A� �

2L2A� . . .� � c:c:�
@2

@t2
Z 1
�1

d���t� ��PNL�z; ��:

(9)

The expansion of LE2 has the form LE2 � �LE2�0 �
��LE2�1 � �2�LE2�2 � . . . and similarly for LE3 . . . . We
equate terms of equal order in � in the left hand side of
Eq. (9) to the corresponding terms on the right hand side.
This process leads to a sequence of partial differential
equations that govern A�Z1; Z2; Z3; . . . ;T�, C�Z1;
Z2; Z3; . . . ;T�, and D�Z1; Z2; Z3; . . . ;T�. It should be noted
that PNL�z; t� defined earlier is of order �2. At order �,
Eq. (9) yields L0�!; k� � 0, which is the plane wave
dispersion relation. The order �2 terms of Eq. (9) yield
 

�LE2�0 � �L1A exp�i�!t� kz�� � c:c:

�

�
@2

@t2
Z 1
�1

d���t� ��PNL�z; ��
�

2
; (10)

where �. . .�2 designates the order �2 of the enclosed quan-
tity. Because the first harmonic term L1A exp�i�!t� kz��
lies in the null space of the linear operator �L . . .�0, it must

be set equal to zero to avoid secular components inE2. This
solvability condition implies L1A � 0, which is explicitly,
@A=@T � vg�!�@A=@Z1 � 0. This expression implies that
the amplitude A�Z1; Z2; Z3; . . . ;T� propagates with speed
vg�!� with respect to the scaled coordinates Z1 and T:
A�Z1; Z2; Z3; . . . ;T� � A�Z2; Z3; . . . ;T � Z1=vg�!��. The
general solution of Eq. (10) is Eq. (6), where the am-
plitude of the second harmonic term is C�Z; T� �
��2!�=�0

n2�!��n2�2!�
��2��2!;!;!�A2�Z; T�. The zero harmonic am-

plitude D�Z; T� is determined at order �4 in the expansion.
The order �3 and �4 terms of Eq. (9) are expressed as
�LE3�0 � F3 and �LE4�0 � F4 where F3 and F4 are func-
tions of lower order fields. Analogous to Eq. (10), spatial
secularities will not be present in their solutions if the
following solvability conditions are satisfied: the first har-
monic term in F3 and the zero harmonic term in F4 must be
absent. These conditions yield the coupled equations
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(12)

where c0 represents the vacuum speed of light. Note that
the product ��2��2!;!;!���2��!; 2!;�!� in Eq. (11) is
actually a cascaded second-order nonlinearity and is
equivalent to an effective third-order nonlinear susceptibil-
ity, ��3�eff�!;!;!;�!�. It is also important to note that the
coefficient of jAj2A in Eq. (11) is singular if n2�!� �
n2�2!�. Under this particular condition, it is necessary to
introduce higher-order multiple spatial and temporal scales
when reducing Eq. (1). When the LWSW resonance con-
dition is satisfied, v2

g�!� � c0
2=n2�0�, Eq. (12) can be

reduced to a lower order equation,

 

@D
@Z2

� �
vg�!�

2�
"0��0���2��0; !;�!�

@jAj2

@TR
; (13)

where TR is the retarded time, TR � T � Z1=vg�!�. The
term @jAj2=@TR is related to the ponderomotive force that
drives the system. In Eq. (13) the coefficient of the deriva-
tive with respect to TR must be of order 1,
vg�!�"0��0���2��0; !;�!� 	O���, which places a re-
striction on the material parameters.

Equations (11) and (13) govern the amplitudes of high-
and low-frequency wave packets that satisfy the LWSW
resonance. The variety of solutions of these equations
requires further study, which we cannot undertake here.
However, we can briefly discuss some of these solutions. If
the medium and wave parameters are such that the term
proportional to jAj2A in the left hand side of Eq. (11) can
be neglected, the resulting equation coupled with Eq. (13)
forms a system that is solved in Refs. [18,19]. Among
possible solutions that have been derived via the inverse
scattering technique are solitons, which will also be appli-
cable to negative index media. A class of solutions that can
be readily derived for our nonlinear LWSW system,
Eqs. (11) and (13), are wave structures of the form
D�Z2; TR� � D�#� and A�Z2; TR� � Q�#� exp�i��TR �
KZ2��, where # � TR � Z2=C, D�#� and Q�#� are real
amplitudes, C is a speed that must be determined, and �
and K are, respectively, a real frequency and a real wave
number. Substituting this particular wave form in Eqs. (11)
and (13) yields the following important results. First, the
speed C is related to the frequency �, �C � ��2���1,
where � is the coefficient of the second derivative with
respect to T in Eq. (11). Second, D�#� is proportional to

Q2�#�whileQ�#� is proportional to sech��#�, where � �������������������������������
�K � ��2�=�

p
, i.e., D�#� and Q�#� propagate as paired

nondispersive pulses with speed C. Other solutions for
D�#� and Q�#� exist, including wave trains with Q�#� as
a periodic function of #. In summary, Eqs. (11) and (13)

are rich in nonlinear wave solutions that may have impor-
tant applications in negative index media.

In conclusion, the LWSW resonance could be a mecha-
nism of terahertz wave generation from optical waves. The
fields A and D that Eqs. (11) and (13) couple would
represent the optical wave envelope and the terahertz
wave, respectively. Energy from the optical wave transfers
to the terahertz wave through the action of a ponderomo-
tive force produced by the optical wave. Currently, a
promising metamaterial candidate for nonlinear phe-
nomena in general and terahertz generation via LWSW
resonance in particular is the 3D semiconductor negative
index metamaterial recently demonstrated [22], as its third
dimension now permits us to explore propagation-
dependent nonlinear phenomena as opposed to nonlinear
scattering from just single layer 2D metamaterials.

In addition, the nonlinear LWSW resonance phenome-
non affords us the opportunity of realizing solitary waves,
paired solitons, and periodic wave trains.
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