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Photonic crystals can be designed to control and confine light. Since the introduction of the concept by
Yablonovitch and John two decades ago, there has been a quest for the optimal structure, i.e., the periodic
arrangement of dielectric and air that maximizes the photonic band gap. Based on numerical optimization
studies, we have discovered some surprisingly simple geometric properties of optimal planar band gap
structures. We conjecture that optimal structures for gaps between bands n and n� 1 correspond to n
elliptic rods with centers defined by the generators of an optimal centroidal Voronoi tessellation
(transverse magnetic polarization) and to the walls of this tessellation (transverse electric polarization).
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Photonic crystals (PhCs) are structures composed of
periodic distributions of high and low index materials.
With lattice constants of the order of the wavelength of
light, PhCs can alter or inhibit its propagation [1,2]. PhCs
are also called photonic band gap (PBG) structures, refer-
ring to the forbidden frequency bands where light cannot
propagate through them. In order to control wide banded
signals, it is of interest to find structures that have maxi-
mum relative band gap sizes. The gap center frequency can
afterwards be controlled by simple geometric scaling.
Depending on polarization, it seems to be well established
that planar band gap structures for transverse magnetic
(TM) polarization consist of triangular arrangements of
circular high index (glass) rods in air and that structures
for transverse electric (TE) polarization consist of triangu-
lar arrangements of circular low index (air) inclusions in a
glass lattice. It is now well understood that the rod-based
TM gaps can be explained by hopping (tunneling) between
individual Mie resonators and that the hole-based TE gaps
can be explained as a Bragg-like multiple scattering phe-
nomenon [3]. However, optimality of these structures has
not been proven, although it has been argued that they
should be good due to the near circular shape of the
associated Brillouin zone [4]. In general, their use is mo-
tivated by geometric simplicity, manufacturability, and
extensive parametric studies [5]. In the quest for optimal
planar band gap structures, a multitude of papers have
reported parameter variation studies on various simple
triangular, square, and hexagonal unit cell and inclusion
shapes in lower and higher bands. However, few papers
have considered the inverse problem: find the distribution
of dielectric material in air (or opposite) that maximizes
the relative band gap size. Previous inverse approaches can
be divided into gradient-based approaches [6–8], exhaus-
tive search methods [9], and evolutionary methods [10,11].
These papers have produced many interesting optimized
topologies. However, clear conclusions about global op-
tima are still missing.

In this Letter we conjecture that optimal PBG structures
can be determined from simple geometric considerations.
More specifically, we propose a simple geometric scheme
that provides (near) optimal structures with gaps between
any two bands. Based on our findings, we conjecture that
the globally optimal structure for TM polarization is the
triangular distribution of circular rods and that the globally
optimal structure for TE polarization is a triangular distri-
bution of hexagonal (instead of the commonly used circu-
lar) holes, i.e., the honeycomb structure. Our findings are
based on the interpretation of an extensive numerical opti-
mization study.

For lossless electromagnetic waves propagating in the
xy plane, TM (E field in the z direction) and TE (H field in
the z direction) polarized waves can be described by two
decoupled wave equations
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The distribution of dielectric is assumed periodic in the xy
plane and constant in the z direction, i.e., �r�x�Rj� �
�r�x�, where Rj are primitive lattice vectors with zero z
component. The scalar fields satisfy the Floquet-Bloch
wave conditions Ez � eik�xEk and Hz � eik�xHk, respec-
tively, where Ek andHk are cell periodic fields. Solving (1)
for wave numbers k belonging to the boundaries of the
irreducible Brillouin zone we get a band diagram as shown
in Fig. 1. We measure the relative band gap between bands
n and n� 1 as
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where k are all wave vector values on the boundaries of the
irreducible Brillouin zone. If �!n=!0

n > 0 for a particular
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n, we say that there is a complete band gap between bands
n and n� 1.

The open question is, what is the periodic distribution of
dielectric �r�x�Rj� � �r�x� that maximizes the relative
band gap between any bands �!n=!

0
n? And further, what

is the geometry that has the maximum band gap among all
bands?

Our answer to the first question is the following: optimal
band gap structures for gaps between bands n and n� 1
can be constructed geometrically by finding the minimum-
energy distribution of n points in the unit cell that satisfy
symmetry and periodicity requirements. The n points de-
fine the centers of n dielectric disks that make up the (near)
optimal TM structure. Furthermore, a Voronoi tessellation
[12] based on the n points gives a partition of the unit cell
into n subdomains whose walls make up the (near) optimal
TE structure.

The geometries described above are known as centrodial
Voronoi tessellations and may be found as follows [12]:
(1) Distribute n points in the unit cell satisfying symmetry
and periodicity requirements. (2) Find the energy minimiz-
ing point distribution by the so-called Lloyd’s algorithm,
i.e., repeat (a) compute the Voronoi diagram corresponding
to the point distribution, (b) compute the centroid of each
cell of the Voronoi diagram, and (c) move each point to the
centroid of the cell (still satisfying symmetry and period-
icity requirements). (3) After convergence of Lloyd’s al-
gorithm, define the TM geometry as dielectric disks
centered in the converged points and with radius r=a �
0:40��dr ��0:31=

���
n
p

(exponent based on numerical experi-
ments) and define the TE geometry as the walls of the
corresponding Voronoi diagrams with wall thickness
t=a � 0:40��dr ��0:34=

���
n
p

where �dr is the relative permittiv-
ity of the dielectric. The procedure is illustrated for the
square unit cell, n � 10, and imposed 45� symmetry in
Fig. 2. Optimal point positions and corresponding Voronoi

tessellations for n � 1 to 15 computed for square and
rhombic unit cells with imposed 45� and 30� symmetries
are shown as black dots and dashed lines, respectively, in
the composite Fig. 3. To answer the second question above,
the global minimizer for Lloyd’s algorithm is the regular
hexagonal cell structure corresponding to a triangular dis-
tribution of generator points [12]. Hence, based on our
findings, the globally optimal configuration for the TM
case corresponds to a triangular arrangement of disk,s
and for the TE case it is the perfect honeycomb structure.

In the following, we describe the numerical algorithm
that leads to the above answers. The goal is to find the
periodic and symmetric distribution of dielectric that max-
imizes the relative band gap (3) for either polarization case.
The unit cell is discretized into N 	 N square or rhombic
elements. The distribution of dielectric is determined in a
pixel-like fashion by the pseudodensity vector � of length
N2, where the individual elements of � can take the value 0
(corresponding to air) or 1 (corresponding to dielectric).
Hence, the spatial dielectric distribution can be described
by �r��� � 1� ���dr � 1�, � 2 �0; 1�N

2
, where the rela-

tive permittivity of air is assumed to be unity. Based on this
discretization and geometry description, we use the finite
element method to solve (1) or (2) for the 16 lowest
eigenvalues and 30 wave vector values evenly distributed
along the boundaries of the irreducible Brillouin zone
(Fig. 1). Relative band gap sizes are then found from (3).

Because of the complicated nature of the solution space,
the optimization problem cannot be solved directly by
gradient-based methods. On the other hand, evolution
based or other random search algorithms will be inefficient
due to the large number of design variables [N2 � O�104�]
needed to describe the geometry sufficiently accurately.
Therefore, we start by an exhaustive search on coarse grids
[Figs. 4(a) and 4(b)]. During the search, we store the 20
best topologies for each band. After a visual inspection, we
select the 5 best topologically different candidates for each
band and map the topologies to fine grids. Using the refined
topologies as initial guesses, we use a gradient-based al-
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FIG. 2 (color). Geometrical procedure for generating (near)
optimal planar band gap structures demonstrated on a square
cell for band n � 10. (a) Initial point positions satisfying sym-
metry and periodicity for Lloyd’s algorithm with free geometric
parameters b1 and b2. (b) Converged point positions and asso-
ciated Voronoi tessellation. (c) (Near) optimal TM structure
(blue), TE structure (red), in air (gray).

FIG. 1. Band diagram for a periodic arrangement of circular
dielectric cylinders with �r � 11:56 and radius r=a � 0:25 in
air. The gray rectangles indicate band gaps where TM-polarized
waves cannot propagate. Insets show the reciprocal lattice with
the irreducible Brillouin zone indicated by the gray triangle (left)
and the periodic lattice (right) with lattice constant a.
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gorithm known as topology optimization [6,7,13] to find
the optimal fine grid structures [Fig. 4(c)].

The results of our optimization procedure applied to
square and rhombic unit cells and �dr � 11:56 (correspond-
ing to GaAs) are shown in Fig. 3. The composite plot shows
the optimized TM structures for each band n in blue and
the optimized TE structures in red. Gray indicates air. The
results are surprisingly simple and visually pleasing. We
observe that the optimized TM structures consist of evenly
distributed elliptic or circular disks and that the optimized
TE structures are subpartitioning closed-walled structures.

The number of disks and the number of subpartitions equal
the band number n, and the TE structures seem to be
Voronoi diagrams based on a point set defined by the
centers of the TM disks. These observations lead us to
the conclusions that optimal band gap structures can be
constructed by simple geometric rules. It is also seen that
the point positions (black dots) obtained from Lloyd’s
algorithm are virtually identical to the centers of the
(blue) dielectric rods obtained from the topology optimi-
zation procedure for all bands, both square and rhombic
unit cells. Also, in most cases the walls of the geometri-
cally obtained Voronoi tessellations coincide with the to-
pology optimized (red) dielectric distributions. One
noteworthy exception is the optimal topology obtained
for the square cell, band n � 9, where the topology opti-
mized TE and TM structures correspond to two different
local minima of Lloyd’s algorithm. This indicates that,
apart from the simple geometric properties of optimal
band gap structures, the exact distribution of dielectric still
plays a role in the determination of the optimal topologies
and gap sizes—this explains our use of the term (near)
optimal in describing the geometrically obtained struc-
tures. Modifications to the ideal geometries are also seen
as ellipticity of the TM disks in the cases where the
distances to nearest neighbors are varying (the long axis
is oriented in the direction of the smaller neighbor dis-
tance; see, e.g., square cell gap n � 3 in Fig. 3). This is
also observed for square cell gap n � 5, where the distance
from the center point to all neighbors is large, resulting in a
small diameter of the center disk.

To further support our conclusions, we compare the
geometric energy of the centroidal Voronoi tessellations
with the relative band gap sizes obtained by the topology
optimization algorithm. The energy is defined asPn
i�1

R
Vi
jjx� xijjdx, where Vi is the area of each

Voronoi region and xi is the coordinate of generating point

FIG. 4 (color online). Two-step optimization process.
(a) Coarse grid with symmetry lines for (a) square unit cell
with N � 10 and 15 free design variables, and (b) rhombic unit
cell with N � 11 and 16 design variables. (c) Result of optimi-
zation process for coarse rhombic grid for band number n � 10
(left) and fine grid (N � 89) solution (right).

FIG. 3 (color). Composite picture showing optimal point posi-
tions (black dots) obtained from Lloyd’s algorithm and corre-
sponding Voronoi tessellations (dashed lines) for band numbers
increasing from n � 1 (upper left) to n � 15 (lower right). Top:
square unit cell; bottom: rhombic unit cell. Colors indicate
topology optimized material distributions. Blue is the optimal
distribution of dielectric for TM polarization, red is the optimal
distribution for TE polarization, and gray indicates air.
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i. If we take the inverse of this energy and multiply it with
the energy of the perfect honeycomb, we get an inverse
normalized energy that is unity for the optimal hexagonal
partition and decreases for higher energy partitions.
Energies and relative band gap sizes for the topology
optimized structures are plotted with respect to the band
number in Fig. 5. The correlation is seen to be very good.
Gap size variations with respect to band number are much
smaller for the square cell since energy and band gap
minimizing hexagonal partitions do not fit into the square
unit cell for small n with the imposed symmetry. On the
other hand, the rhombic unit cell allows for both the
optimal hexagonal cell partition (bands n � 1, 4, and 9)
and the worst case partitions (bands n � 2 and 5), hence
providing much bigger variations in gap sizes. The maxi-
mum relative band gap size over all bands and unit cell
geometries and TM polarization is 0.48 for the triangular
distributions of circular disks in the rhombic unit cells (for
bands 1, 4, and 9) and 0.52 for TE polarization with the
honeycomblike structures with hexagonal air inclusions in
the rhombic unit cells (for bands 1, 4, and 9).

Our results provide a new understanding of previous
findings from the literature. The optimal triangular pattern
of rods for the TM case maximizes the distance between
individual rods and hence retards tunneling between Mie
resonators, and the corresponding TE structures are the

best possible realization of an isotropic equidistance 2D
Bragg grating. Also, most of our optimized square cell
structures can be found in Ref. [8]. For those cases where
there are discrepancies, our band gap sizes are larger. In
[11] it is suggested that relaxation of symmetry require-
ments may increase gap size. This is true, and we note that
their optimized structure is the best possible realization of
a hexagonal hole structure in a square cell. Again, this
confirms our conclusions.

The optimality of triangular arrangements of disks for
the TM case is already generally accepted. For the TE case,
the triangular arrangement of circular holes is the estab-
lished geometry; however, the gain in relative band gap
size is probably too small (the gap for hexagonal holes is
0.52 compared to 0.50 for circular holes) to merit the added
complexity of having to etch hexagonal holes. On the other
hand, competing objectives like minimization of pressure
drop for optofluidic systems [14], isotropy, or local defect
optimizations may result in other structures being optimal.
Here, our conclusions on the geometric properties of opti-
mal gap structures and their gap values may be of help.

We have also applied our optimization algorithm to the
case of full gaps, i.e., simultaneous TM and TE gaps.
However, we found no systematism for this case. Future
investigations will concentrate on surface plasmons and the
full 3D case.

This work received support from EUROHORCs, NEDO
(Japan), and Danish Center for Scientific Computing.
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FIG. 5 (color). Relative band gaps and geometric energies vs
band number for square cell (top) and rhombic cell (bottom).
Band gaps for TM polarization (blue lines and empty circles),
TE polarization (red lines and filled circles), and inverse nor-
malized energy (black dashed lines and stars).

PRL 100, 153904 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 APRIL 2008

153904-4


