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Adiabatic Approximation in Nonperturbative Time-Dependent Density-Functional Theory
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We construct the exact exchange-correlation potential of time-dependent density-functional theory and
the approximation to it that is adiabatic but exact otherwise. For the strong-field double ionization of the
Helium atom these two potentials are virtually identical. Thus, memory effects play a negligible role in
this paradigm process of nonlinear, nonperturbative electron dynamics. We identify the regime of high-
frequency excitations where the adiabatic approximation breaks down and explicitly calculate the
nonadiabatic contribution to the exchange-correlation potential.
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Progress in laser technology has provided the experi-
mental tools to study and manipulate electron dynamics on
atomic scales [1]. On the theoretical side, this strong-field
regime can in principle be accessed by solving the many-
electron time-dependent Schrodinger equation (TDSE). In
practice, however, a first-principles approach in this vein is
ruled out by the tremendous computational cost of solving
the TDSE for more than two electrons in three dimensions.
Time-dependent density-functional theory (TDDFT) [2]
offers a computationally attractive approach to strong-field
electron dynamics [3,4] which is in principle exact, but in
practice requires approximations for the time-dependent
exchange-correlation (xc¢) potential v, (r, 7).

Up to now applications of TDDFT almost exclusively
rely on “adiabatic approximations” [e.g., the adiabatic
local density approximation (ALDA)], which are obtained
by plugging the time-dependent density into one of the
existing ground-state density functionals for wv,..
Approaches of this type have also been used to calculate
the double ionization (DI) of the helium atom, one of the
most prominent effects in the regime of strong-field elec-
tron dynamics. Its importance as a benchmark for theoreti-
cal many-body methods stems from the fact that DI yields
in the low-intensity regime are found to be substantially
increased due to pronounced electron correlation effects
[5,6]. As aresult of this “nonsequential ionization’’ (NSI),
the famous ‘knee” structure appears in the double-
ionization probability as a function of intensity. A combi-
nation of theoretical [7-12] and experimental [13-15]
studies has by now established the recollision model as
the mechanism responsible for NSI. But most attempts
based on adiabatic TDDFT have failed completely to
even qualitatively describe NSI [16-19]. It has been ar-
gued [20] that this failure may be due to a missing particle
number discontinuity [21] in the commonly used ground-
state functionals for v,,.

A priori there is little reason to believe that any ground-
state functional can yield reliable results for a process like
DI, because it is known that nonadiabatic effects in v, can
play an important role [22—28]. It is a natural and common
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assumption that these effects should be particularly impor-
tant in nonlinear, nonperturbative processes that take a
system far away from its ground-state, as, e.g., in strong-
field ionization.

In this Letter we explore the adiabatic approximation
beyond the linear response regime. For the hallmark ex-
ample of a strong-field process, the helium DI, we compare
the exact time-dependent xc potential to the xc potential
(defined in detail below) that is an adiabatic approximation
but is exact otherwise. This adiabatically exact approxima-
tion is local in time, i.e., shows no memory effects, but is
fully nonlocal in space, i.e., the multiplicative potential
v,.(r) depends not only on the density # at r, but also on n
at all other points of space. Our calculations reveal that for
the intensities and frequencies that are usually considered
in the context of strong-field electron dynamics, and spe-
cifically for the helium DI, the adiabatic approximation
works extremely well. Thus, an accurate description re-
quires nonlocality in space more than nonlocality in time.

For the definition of the *“‘adiabatically exact approxi-
mation” one should recall that, for the initial state being
the ground state, the exact xc potential shows ‘“memory”
as at any given time ¢ it is a nonlocal functional of the exact
time-dependent density n at all previous times, i.e.,
ve(r, 1) = vE[n(r/, ¢)](r, r) where ¢ < t. By definition it
is related to the exact Kohn-Sham (KS) potential
v [n(r, )](r, 1) by

vR(r, 1) = v$¥(r, 1) — vy(1, 1) — Ve (T, 1), (1)

where v, is the external potential and v, is the Hartree
potential, which is a functional of the density only at ¢/ = .
By virtue of the Runge-Gross theorem, the potential v¢*
corresponding to the exact time-dependent density is
unique, and it can be shown to exist [29].

The adiabatic approximation is defined by treating the
time-dependent density at a fixed time ¢ = ¢, as a ground-
state density, i.e., ny(r) = n(r, ;). Consequently, the adia-
batically exact KS potential v29**(r) is the local potential
which yields ny(r) as the solution of the noninteracting,
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single-particle Schrodinger equation. The correspondence
between ny and v is unique according to Hohenberg
and Kohn [30]. Following standard ground-state DFT, the
xc contribution to v (r) is given by

VR () = vi () — v £p) = Vexgo(X), ()
i.e., this defines the adiabatically exact xc potential at ¢ =
to. Here, vy, is again the Hartree potential corresponding to
the given density ny and wveo(r) is the local external
potential which yields n as the solution of the interacting
many-particle Schrodinger equation. Also the mapping
between ny and veo(r) is unique according to
Hohenberg and Kohn. Therefore, v23®*(r) is uniquely
defined by Eq. (2) and is a numerical representation of
the unknown exact ground-state xc potential functional.
The existence of the ground-state potentials is also guar-
anteed [31]. Comparing v<¥ and padiaex wipp directly reveal
the nonadiabatic effects.

Using these definitions in practice requires the exact
time-dependent density as an input. For the helium atom
the latter can be calculated at bearable computational cost
from the solution of the TDSE by using a one-dimensional
model which reproduces the essential features of the DI
process [10,11,16,17,32]. In this model, the helium atom in
a time-dependent external potential v (z, 1) is described
by the Hamiltonian

P2
H= jZLz(j + Vexi(z) t)) T Wiz —z) 3

with electron coordinates z;, z;, momenta p|, p,, electron

mass m and the soft-core interaction W(z) = e?/+/z> + 1.
The external potential vy (z, 1) = —2W(z) — ezE(f) con-
tains the electron-nucleus interaction and the potential of
the time-dependent electrical field E(z). Taking the spatial
wave function to be be symmetric under exchange of
electrons, the time-dependent Schrodinger equation
ihd,y = HY is solved numerically. The two-
electron wave function obtained in this way allows to
calculate the exact time-dependent density n(z, ) =
2 [lp(z, 2/, )|*dZ’ and, via the inversion of the time-
dependent KS equation (TDKS) [20,33], the exact time-
dependent KS potential v¢*. From the latter, the exact
correlation potential v¥* = v — v, follows by Eq. (1),
as for a two-electron singlet system vy, ‘= v, + v, =
1/2v), with v,(z, 1) = [n(Z, NW(z — 2)dZ.

Thus, v can readily be calculated. However, obtaining
viaeX ¢ a4 formidable task even in the one-dimensional
model. Calculating the adiabatically exact total KS poten-
tial is still easy: Making the above described identification
no(z) = n(z, 1), the adiabatically exact total KS potential
follows from the inversion of the static KS equation,

o1

< d*¢(2)
adia,ex "
Vi) m 2¢(z) dz?

+ const., 4)

where ¢(z) = \/no(z)/2. The challenge is posed by the
exact xc part according to Eq. (2): finding v, ((r) requires
the inversion of the interacting static Schrodinger equation
Hyy = Eyyy (SE) for the ground state ¢, which satisfies
the constraint no(z) = 2 [ |¢h(z, z')|*dz’. Here,

p2

Hy= ]_2122(% + Uext,O(Zj)> + W(Zl o 22)' ®)

To find v for a given n, we implemented a general-
ization of an iterative scheme [34]. Starting with an initial
guess Ug()t,O for vey o we calculate [33] the corresponding
ground-state wave function, which in turn yields the den-
sity ng)l) corresponding to vg()t,o. Then a new potential is

constructed according to the rule

v 0@ = v (@) + w@ni V@) = ne@] (©)

where i = 2 for the first step. w(z) = a|z|? (with parame-
ters a, B > 0) is a weight function allowing to increase the
contribution of the density-fall-off region. The thus ob-

0]
0

tained v, in turn leads to a n> via solution of the SE.

ext,0
These steps are iterated until the density ng) has converged
to ng according to the criterion

f Ing)(z) — no(2)ldz = A, (7

where A is a measure for the desired accuracy. Once we
have obtained v, o(z), the adiabatically exact correlation
potential v3**(z) follows from Eq. (2) with vy, being
identical for the time-dependent and static case.

In order to assess the validity of the adiabatic approxi-
mation, we solve the two-electron TDSE for given poten-
tials v, (z, 1) representing paradigm cases of strong-field
electron dynamics (discussed in detail below). At every
time step 7 we then construct v&* and v according to
the procedure described above.

In our first study we take E(7) to be a dc electric field that
is ramped up during 27 a.u. (0.65 fs) to a maximum value
Ey=0.141 a.u. and held constant afterwards. Starting
from the two-electron ground state this leads to field-
induced ionization of the system with the electrons escap-
ing to z — 0. To avoid numerical problems caused by
strongly accelerated electrons, the interaction with the field
is truncated at a distance of 35 a.u. from the nucleus [20].
The resulting time-evolution of the density and the poten-
tials is shown in Fig. 1. v and v¢* are defined only up to
an additive time-dependent constant, which has been ad-
justed so that the boundary condition v¢*(z, t) — 0 for z —
oo is fulfilled. The free additive constant in v*¥** and
Vext 0 cannot be fixed, thus all adiabatically exact potentials
are shifted to match the exact ones at z = 0. As with other
known density-inversion schemes, our procedures work
accurately only in regions of space where a sufficient
amount of density is located. As a rule of thumb, regions
where n(z) >10"2 au. can safely be considered.
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FIG. 1. Density, total KS potential, and correlation potential
(from top to bottom) at the 3 times r = 0, 21.5, 43.0 a.u. (from
left to right) during the interaction of the two-electron atom with
a dc electric field. Solid curves: exact time-dependent v$* and
ve*; dashed curves: adiabatically exact pdisex ang padiaex
(Hartree units). Note the different scales in the plots and that
v and e are very close, with deviations at the boundaries
being a numerical consequence of low density; see text.

Restricting the analysis to regions of space where the
density obtained with the iterative scheme also reproduces
the one from the TDSE with high accuracy acts as a further
safeguard against numerical artefacts.

Figure 1 shows that the exact and adiabatically exact
versions of the total KS potential v, differ substantially and
qualitatively. This reflects the fact that the former corre-
sponds to an excited density in the presence of the linear
laser potential, and the latter to a bound ground state in a
global potential minimum. However, the surprising result
is that the lowest line of panels in Fig. 1 undoubtedly
reveals that the correlation contributions to the potentials,
i.e., v%(z) and v21*X(2), agree extremely well at all times
(also for times much longer than what is shown in Fig. 1).
This indicates that memory effects in the correlation po-
tential are practically negligible for this process. Also the
buildup of a steplike structure in v, at later times as
identified in [20] is well reproduced by the adiabatically
exact approximation.

To probe the regime where nonadiabatic effects manifest
themselves in the correlation potential, we consider as our
second study an external potential in which the density is
deformed more rapidly than during the ramping process.
Instead of adding an external laser field to the electron-
nucleus interaction, we directly perturb the soft-core po-
tential according to

2¢?
JIz — (0.5 au)sin(w?) > + 1

Vet(z, 1) = — (8)

This forcing mimics an oscillatory motion of the nucleus. It
has the benefit of keeping the density relatively well local-

ized, thus allowing for stable solutions in the TDKS-inver-
sion-scheme. The chosen frequency w = 0.9 a.u. is close
to the frequency range investigated in earlier work on two-
electron systems in the nonadiabatic regime [25,26].
Figure 2 shows that for the external potential (8) the
density gets rapidly and strongly deformed and does not
return to its initial shape after a full cycle of the forcing. To
contain such a density as a ground state, the adiabatically
exact KS potential produces additional minima which are
not present in its exact, nonadiabatic counterpart. The
resulting v displayed in the lowest line of Fig. 2
differs markedly from v¢*, showing that nonadiabatic ef-
fects become important.

Finally, in our third study we turn our attention to the
practically most relevant case of strong, time-dependent
external fields due to powerful laser pulses of the 780 nm
wavelength that is typically used in strong-field experi-
ments. The oscillation here is of moderate frequency but
the density is strongly displaced from its initial position.
This is a setup for which ALDA is known to fail badly [18].
The results shown below are obtained during a 4-cycle
pulse with linear turn-on and -off for two cycles each.
Our comparison now is done in the way that is most useful
to assess the accuracy of the adiabatically exact approxi-
mation in practice: We propagate [33] the KS orbital while
using at every time step the adiabatically exact approxi-
mation of v, that is obtained self-consistently from the KS
density [35].

The TDSE is solved as the exact reference and now is
used only for that purpose. To compare the results of the
adiabatically exact TDKS calculation to those of the
TDSE, we focus on the number of bound electrons,

Ny(1) = f_ n(z, 1)dz, 9)

with |z] = a = 5 a.u. This is a decisive quantity for the
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FIG. 2. Same as Fig. 1 but for the two-electron atom during
high-frequency excitation according to (8) at t = %T, t=T=
27/w and t = %T (from left to right). The initial situation at t =
0 is the same as in Fig. 1.
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FIG. 3. Total ionization during the interaction of the two-
electron atom with a laser pulse of maximum intensity /; =
4 X 10" W/cm? (lower two curves) and I, = 7 X 10" W/cm?
(upper two curves). Solid curves: exact TDSE calculation;
dashed curves: adiabatically exact TDKS scheme. The inset
shows a magnification of the first part of the curve.

interpretation of the ionization results, as the DI yields
depend crucially on it [18,19]. It is also well suited for
the comparison, because it can be calculated directly from
the density without making additional approximations.
Figure 3 shows the time evolution of the total ionization,
N,(0) — N, (1), for two different maximum laser intensities
typical of experimental conditions. The striking result is
that the curves obtained from the adiabatically exact TDKS
calculation lie virtually on top of the exact ones. Thus, the
time evolution is not influenced by memory effects for the
intensities within the crucial NSI region.

In summary, we calculated the adiabatic xc potential by
inverting the interacting SE. Thus, we were able to visual-
ize the nonadiabatic effects in v, (r, f) exactly, providing a
procedure to directly track down this fundamental but
elusive feature of TDDFT. As a test of immediate practical
relevance we have performed a nonlinearized, nonpertur-
bative Kohn-Sham calculation of strong-field ionization
which consistently used the adiabatically exact approxi-
mation for v,.. While memory effects in v,, are known to
be crucial for the description of phenomena like, e.g.,
double excitations, our results show that they are negligible
for typical strong-field excitations, and, in particular, for
the paradigm process of the helium DI. Here, the adiabati-
cally exact TDDFT approach yields excellent results.
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