Lifetime Measurement of the First Excited 2⁺ State in ¹⁶C

M. Wiedeking, P. Fallon, A. O. Macchiavelli, J. Gibelin, M. S. Basunia, R. M. Clark, M. Cromaz, M.-A. Deleplanque,

S. Gros, H. B. Jeppesen, P. T. Lake, I.-Y. Lee, L. G. Moretto, J. Pavan, L. Phair, and E. Rodriguez-Vietiez

Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

L. A. Bernstein, D. L. Bleuel, J. T. Burke, S. R. Lesher, B. F. Lyles, and N. D. Scielzo Lawrence Livermore National Laboratory, Livermore, California 94550, USA

(Received 20 November 2007; published 16 April 2008)

The lifetime of the 2_1^+ state in 16 C has been measured with the recoil distance method using the 9 Be(9 Be, 2p) fusion-evaporation reaction at a beam energy of 40 MeV. The mean lifetime was measured to be 11.7(20) ps corresponding to a $B(E2; 2_1^+ \rightarrow 0^+)$ value of $4.15(73)e^2$ fm⁴ [1.73(30) W.u.], consistent with other even-even closed shell nuclei. Our result does not support an interpretation for "decoupled" valence neutrons.

DOI: 10.1103/PhysRevLett.100.152501

PACS numbers: 27.20.+n, 21.10.Tg, 23.20.Lv

Nuclei located near the valley of beta stability have strongly correlated proton and neutron spatial distributions. This need not be the case for nuclei with a large excess of one nucleon type, and the search for new phenomena and structure effects due to the "decoupling" of neutrons and protons is of great interest in nuclear structure physics. Examples of such decoupled behavior include neutron halo nuclei [1,2], which have measurably different proton and neutron radial distributions, and low-energy dipole modes such as "pygmy" resonances [3] where, in a simple picture, a core of equal numbers of protons and neutrons oscillates against the excess neutron "skin." Recently another example was suggested to occur in ${}^{16}C$. A lifetime measurement of its first excited state yielded an anomalously small $B(E2; 2^+_1 \rightarrow 0^+)$ value of $0.63e^2$ fm⁴ [0.26 Weisskopf units (W.u.)] [4], while inelastic scattering experiments [5,6] indicated a large nuclear deformation $(\beta_2^{pp'} \sim 0.47(5)$ [6]) more typical of neighboring nuclei. The quenched B(E2) value, combined with the large nuclear deformation in ¹⁶C, led to the suggestion that its valence neutrons were decoupled from the near-spherical proton core [5-7].

In this Letter we report a model-independent lifetime measurement for the first-excited 2^+ state in 16 C. Our data do not support the interpretation of decoupled protons and neutrons in 16 C, and are consistent with proton and neutron deformations that follow the systematic trend of other even-even nuclei. The revised value for the 16 C $B(E2; 2^+_1 \rightarrow 0^+)$ provides an important benchmark for theory.

The experiment was carried out at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. ¹⁶C was produced by the ⁹Be(⁹Be, 2*p*) fusion-evaporation reaction at a beam energy of 40 MeV. The average beam current during the 5 day experiment was ~0.5 p nA. The ⁹Be target thickness was 1.35(5) mg/cm², as determined by energy loss measurements of ²¹⁰Po α particles through the target. Lifetimes were measured using the recoil distance

method [8] in which a 41.5 mg/cm^2 thick, hardened, 99.95% natTa foil was mounted downstream of the Be target. Both Be and Ta foils were mounted on aluminum frames with a 1 cm diameter aperture. The distance between the ⁹Be target and Ta stopper foil was varied using a set of spacers to give target-stopper distances of 0.64(1), 0.21(1), and 0.08(1) mm. The LIBERACE-STARS detector array, consisting of Compton suppressed HPGe Clovertype detectors [9,10] and large area segmented annular silicon detectors (ΔE -E telescope) [11], was used to detect γ radiation and charged particles. For this experiment two Clover-type γ -ray detectors were placed at 40°, one at 90°, and two at 140° relative to the beam direction at a distance of 16.5 cm from the target. The particle telescope consisted of one 144 μ m ΔE and one 1003 μ m E detector, separated by 2.5 mm, and mounted 3.0 cm downstream from the target position. A large-area 21 mg/cm² thick ^{nat}Ta foil spanned the front of the ΔE detector. The thickness of this foil, combined with the 41.5 mg/cm^2 Ta stopper foil, was sufficient to stop scattered beam and ⁹Be breakup particles from reaching the ΔE detector.

The experimental trigger required the detection of at least one charged particle in both the ΔE and E detector within a coincidence window of approximately 200 ns. γ -ray events were recorded to disk if they were associated with a valid particle trigger. Offline analysis required the simultaneous detection of two charged particles within a 100 ns coincidence window. A time gate between the two charged particles and the associated γ rays was used to reject uncorrelated events. The silicon detectors were calibrated with an α -emitting ²²⁶Ra source. Clover detector energy and efficiency calibrations were determined using ⁵⁶Co and ¹⁵²Eu γ -ray sources. The full energy γ -ray detection efficiency was $\sim 1\%$ at 1 MeV, and the 1 proton detection efficiency was $\sim 20\%$.

The 2-proton (2p) fusion-evaporation reaction channel was a key aspect of this lifetime measurement—the large proton binding energy exhausted much of the available

FIG. 1. Spectrum of γ rays in coincidence with 2 protons. Transitions marked by their energies are associated with ¹⁶C. Gamma-ray energies were Doppler corrected for a recoil velocity of v/c = 0.03. The spectrum shows the combined data from the 0.64 and 0.21 mm distances. The 1758 keV peak contains \sim 200 counts and corresponds to 36 h beam on target. The dispersion is 4 keV/channel.

excitation energy and significantly suppressed the evaporation of additional neutrons at the chosen beam energy of 40 MeV. The requirement to detect two protons simultaneously in the silicon detectors cleanly selected the weak \sim 0.3 mb ¹⁶C channel from the total \sim 700 mb cross section estimated for fusion channels (cross sections are taken from PACE [12] statistical model estimates).

Figure 1 shows a portion of the Doppler-corrected spectrum of γ rays in coincidence with two protons. The transition at 1758(2) keV corresponds to the γ decay of the 2_1^+ state in ¹⁶C. The three transitions at 2365(4), 2303(4), and 2215(4) keV directly feed the 1758 keV 2_1^+ state and are assigned to the decay of the 4^+ , $3^{(+)}$, and 2_2 states, respectively [13–17]. They account for 54(5)% of the total intensity feeding the 1758 keV 2_1^+ state with the remaining intensity coming from unobserved side feeding. The main contaminant peak in the 2p gated spectrum is at 741(1) keV from the ⁹Be(⁹Be, 2p1n)¹⁵C reaction. The 741 keV state is the only bound state in ¹⁵C and does not interfere with the more energetic γ lines in ¹⁶C.

Excited-state lifetimes were derived from the observed Doppler-shifted and unshifted components of the γ -ray transition. Gamma-ray spectra for the 2p (¹⁶C) and 1p1n

FIG. 2. Gamma-ray spectra for detector angles at 140° , 90° , and 40° obtained at the 0.21 mm (left two columns) and 0.08 mm (right two columns) target-stopper distances for ¹⁶C and ¹⁶N. 2-proton (¹⁶C) gated spectra (first and third columns) and 1-proton, 1-neutron (¹⁶N) gated spectra (second and forth columns) are shown. Stars indicate moving peak components.

(¹⁶N) reaction channels are shown in Fig. 2 for two of the three target-stopper distances: 0.21 and 0.08 mm. ¹⁶N has a 3^{-} state decaying via a 298 keV γ ray with a mean lifetime of 131.7(19) ps [18], and a 1^- state decaying via a 277 keV γ ray with a mean lifetime of 5.63(5) ps [18]. The ¹⁶N γ rays provide an internal calibration for lifetimes extracted in this experiment. The average velocities of the ¹⁶C and ¹⁶N recoiling nuclei were measured to be v/c =0.030(2) and v/c = 0.031(3), respectively, from observed Doppler-shifted γ -ray energies. State lifetimes were determined using the relation $N/N_0 = e^{-(t/\tau)}$ where N is the number of counts in the stopped γ -ray peak, N_0 is the sum of moving and stopped peaks, t is the average time taken for the recoil to traverse the gap between the target and stopper foil, and τ is the mean lifetime. The equation is for a single component decay curve. Results extracted from these data, and previously measured values, are summarized in Table I.

At the 0.21 mm target-stopper distance (two left columns of Fig. 2) the ${}^{16}C$ 1758 keV γ ray and the ${}^{16}N$ 277 keV γ ray show no evidence for a significant (10%) stopped peak component at 40° and 140°. A similar situation is observed for the 0.64 mm distance. Note, if the 2^+_1 ¹⁶C lifetime were 77 ps as reported in Ref. [4] we would have observed \sim 74% stopped component for the 1758 keV transition at this distance. In contrast, the 298 keV γ ray in ¹⁶N exhibits both a moving and stopped component. From measurements using the 0.64 mm distance we determine a mean lifetime of 119(14) ps for the ${}^{16}N 3^{-}$ state in agreement with the published value of 131.7(19) ps [18]. At a target-stopper distance of 0.08 mm (two right columns of Fig. 2) the ¹⁶C 1758 keV γ ray has both a moving and stopped component. The ratio $[N/N_0 = 46.7(50)\%]$ yields a mean lifetime of 11.7(20) ps for the 2^+_1 state in ¹⁶C. The ¹⁶N 277 keV transition has $N/N_0 = 21.1(26)\%$ giving a lifetime of 5.6(10) ps in good agreement with the reported value of 5.63(5) ps [18]. The measured lifetime of 11.7(20) ps for the ¹⁶C 2_1^+ state corresponds to a $B(E2; 2_1^+ \rightarrow 0^+)$ of $4.15(73)e^2$ fm⁴ [1.73(30) W.u.], a value comparable to B(E2) values for other closed shell even-even nuclei (for example, Fig. 4 of Ref. [4]).

The lifetime values reported here assume a single exponential decay curve, which is valid for feeding (life)-

TABLE I. Transition mean lifetimes obtained in this (τ) and previous (τ prev.) work. The 3⁻ and 1⁻ states in ¹⁶N provide an internal reference for the ¹⁶C value.

Nucleus	Spin	E_{γ} (keV)	au (ps)	τ prev. (ps)
¹⁶ C	2^{+}	1758	11.7(20) ^a	$77(14)_{stat}(19)_{syst}^{b}$
¹⁶ N	1^{-}	277	5.6(10) ^a	5.63(5) °
¹⁶ N	3-	298	119(14) ^d	131.7(19) ^c

^aFrom 0.08 mm distance.

^bRef. [4].

^cRef. [18]

^dFrom 0.64 mm distance.

times far shorter than the state lifetime. The agreement with the ¹⁶N adopted values shown in Table I supports this assumption. In ¹⁶C the three transitions feeding the 2_1^+ level (Fig. 1) are fully shifted at the 0.08 mm distance implying their mean lifetimes are <4 ps. We note that a 4 ps feeding lifetime (upper limit) would give a reduced ¹⁶C 2_1^+ lifetime of \approx 9 ps, but would not affect the main conclusion of our result.

We now discuss the ¹⁶C lifetime in relation to neighboring nuclei. ¹⁶C consists of 2 proton holes (with the wave function dominated by the $0p_{1/2}^{-2}$ component) and 2 neutrons (mainly $\nu 1s_{1/2}0d_{5/2}$) outside the ¹⁶O core (Fig. 3). The ¹⁸O 2⁺₁ state lies at 1982 keV while the ¹⁴C 2⁺₁ state is located at 7012(4) keV [17]. The lowest-lying states in ¹⁶C are therefore more likely to resemble those of the neutron $\nu(sd)^2$ configuration in ¹⁸O. This interpretation is confirmed in earlier (t, p) reaction studies [13–15] and more recently by knockout reactions [19]. Comparing ¹⁶C to ¹⁸O we find the ${}^{16}C B(E2; 2^+_1 \rightarrow 0^+)$ of 1.73(30) W.u. to be similar to the ¹⁸O value of 3.40(9) W.u. when scaled by Z^2 , $(6/8)^2$. This follows from the assumption that the 2^+_1 in both ¹⁸O and ¹⁶C is a neutron excitation and the B(E2)arises from the effective charge induced by core polarization [20]. Next we consider ${}^{16}C$ as ${}^{14}C + n + n$ and calculate the value ${}^{16}C B(E2; 2^+_1 \rightarrow 0^+)$ using the OXBASH shell model code [21] in the modified universal-sd shell [22] model space. The measured ¹⁶C B(E2) is reproduced with an effective neutron charge $e_n \approx 0.46$, very close to the standard value $e_n = 0.5$ used in this region. In addition, the mean lifetime of 3.77(10) ns [17] for the $d_{5/2} \rightarrow s_{1/2}$ transition in ¹⁵C corresponds to $e_n \approx 0.4$ (assuming a pure neutron excitation), which was derived using the expression in Ref. [23] and a value of $\langle d_{5/2} | r^2 | s_{1/2} \rangle = 9.07 \text{ fm}^2$ obtained from harmonic oscillator wave functions.

FIG. 3. Schematic comparison of the lowest 2^+ states in ¹⁸O, ¹⁴C, and ¹⁶C. The dashed state and transition at ~7000 keV in ¹⁶C is illustrative only and has not been observed experimentally.

The effective charge is a measure of the coupling between valence neutrons and the proton core. The exercise to derive the ¹⁶C $B(E2; 2_1^+ \rightarrow 0^+)$ starting from both ¹⁸O and ¹⁴C establishes the important point that a value for the neutron effective charge ($e_n \approx 0.4$) normal to this region can be applied also to ¹⁶C. This means the valence neutrons are coupled to the proton core in ¹⁶C with a strength also "normal" to this region.

The ratio of the neutron and proton transition matrix elements, M_n/M_p [24], has also been used to indicate differences between neutron and proton distributions, when compared to the *isoscalar* value $M_n/M_p \sim N/Z$. The relation $\beta_2^{em} = (4\pi/3ZR^2)[B(E2;0^+ \rightarrow 2_1^+)/e^2]^{1/2}$, with $R = 1.2A^{1/3}$ fm, yields a deformation $\beta_2^{em} = 0.35(6)$ and a "Coulomb" deformation length $\delta_{em} = \beta_2^{em}R = 1.05(18)$ fm for ¹⁶C. Combining this value of δ_{em} with the total "nuclear + Coulomb" deformation length taken from inelastic scattering experiments [5,6] we obtain the ratio $M_n/M_p \approx 2.4$ or $M_n/M_p \approx 1.4(N/Z)$, a value close to that of ¹⁸O [24,25].

To summarize, the recent suggestion for decoupled neutron and proton matter distributions in ¹⁶C has generated much interest. This work reports a model-independent measurement of the lifetime of the ¹⁶C 2₁⁺ state of 11.7(20) ps, which corresponds to a $B(E2; 2_1^+ \rightarrow 0^+)$ of 4.15(73) e^2 fm⁴ [1.73(30) W.u.], consistent with B(E2) values for other even-even nuclei. This result does not support the interpretation of decoupled valence neutrons. The revised value for the ¹⁶C $B(E2; 2_1^+ \rightarrow 0^+)$ provides an important benchmark for theory.

The authors thank the operations staff of the 88-Inch Cyclotron. For Lawrence Berkeley National Laboratory this work was supported by the Director, Office of Science, Office of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Part of this work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48 and under

Contract No. DE-AC52-07NA27344.

- [1] I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985).
- [2] A.S. Jensen et al., Rev. Mod. Phys. 76, 215 (2004).
- [3] U. Kneissl, N. Pietralla, and A. Zilges, J. Phys. G 32, R217 (2006).
- [4] N. Imai *et al.*, Phys. Rev. Lett. **92**, 062501 (2004); K. Heyde, L. Fortunato, and J.L. Wood, *ibid.* **94**, 199201 (2005); N. Imai *et al.*, *ibid.* **94**, 199202 (2005).
- [5] Z. Elekes et al., Phys. Lett. B 586, 34 (2004).
- [6] H.J. Ong et al., Phys. Rev. C 73, 024610 (2006).
- [7] Zs. Dombradi et al., Phys. Lett. B 621, 81 (2005).
- [8] T.K. Alexander and J.S. Forster, *Advances in Nuclear Physics* (Plenum, New York, 1978), Vol. 10, Chap. 3.
- [9] G. Duchêne *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **432**, 90 (1999).
- [10] Z. Elekes *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **503**, 580 (2003).
- [11] J.T. Burke et al., Phys. Rev. C 73, 054604 (2006).
- [12] A. Gavron, Phys. Rev. C 21, 230 (1980).
- [13] D. P. Balamuth et al., Nucl. Phys. A290, 65 (1977).
- [14] H.T. Fortune et al., Phys. Lett. 70B, 408 (1977).
- [15] H.T. Fortune et al., Phys. Rev. Lett. 40, 1236 (1978).
- [16] R. R. Sercely, R. J. Peterson, and E. R. Flynn, Phys. Rev. C 17, 1919 (1978).
- [17] F. Ajzenberg-Selove, Nucl. Phys. A523, 1 (1991).
- [18] J. Billowes et al., Nucl. Phys. A413, 503 (1984).
- [19] V. Maddalena et al., Phys. Rev. C 63, 024613 (2001).
- [20] A. Bohr and B. R. Mottelson, *Nuclear Structure* (World Scientific, Singapore, 1998), Vol. 2, Chap. 6-5.
- [21] B. A. Brown et al., MSU-NSCL Report No. 1289.
- [22] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006).
- [23] A. Bohr and B.R. Mottelson, Nuclear Structure (Ref. [20]), Vol. 1, Chap. 3-3.
- [24] A.M. Bernstein, V.R. Brown, and V.A. Madsen, Phys. Rev. Lett. 42, 425 (1979).
- [25] A. M. Bernstein, V. R. Brown, and V. A. Madsen, Phys. Lett. B 103, 255 (1981).