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Universal Charge-Radius Relation for Subatomic and Astrophysical Compact Objects
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Electron-positron pair creation in supercritical electric fields limits the net charge of any static,
spherical object, such as superheavy nuclei, strangelets, and Q balls, or compact stars like neutron stars,
quark stars, and black holes. For radii between 4 X 10? and 10* fm the upper bound on the net charge is
given by the universal relation Z = 0.71Ry,,, and for larger radii (measured in femtometers or kilometers)
Z=7X107°R2 =7 x 103 R . For objects with nuclear density the relation corresponds to Z =
0.7A'3 (10 <A < 10'?) and Z = 7 X 107°A%/3 (A > 10'2), where A is the baryon number. For some
systems this universal upper bound improves existing charge limits in the literature.
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Spontaneous formation of real electron-positron pairs in
supercritical electric fields is known to lead to screening of
highly charged objects [1,2]. This is in addition to the
vacuum polarization effect caused by virtual pairs [2]. In
the following it will be shown that pair formation implies a
universal upper limit on the net charge of any static,
spherical object of given radius. The upper bound on the
net charge for R >4 X 10?> fm is Z,, = 0.71R, = 7.1 X
10" Ry, where the radius is measured in femtometers or
kilometers to show the typical scales for subatomic objects
or compact stars like neutron stars, quark stars, and black
holes, and the subscript oo indicates infinite time available
for pair formation. Hypothetical superheavy nuclei, quark
nuggets (also known as strangelets), and other objects with
nuclear matter density have Ry, = A!/3, where A is the
baryon number, so the charge bound can be recast as Z,, =
0.7A'/3. This universal charge bound is complementary to
and often significantly more restrictive than other bounds
in the literature. However, it implicitly assumes that infi-
nite time is available to populate electron levels via pair
creation. Taking the relevant time scales into account the
maximum charge increases for R > 10* fm (A > 10'?) to
Z~7X1079R2 ~7 X 107°A>/ (the latter expression
assuming nuclear matter density). This relation improves
existing limits for, e.g., strangelets, reproduces an earlier
result for massive black holes, but is inferior to charge
limits based on stellar stability for gravitationally bound
neutron stars when only finite time is available for pair
creation.

In the following the upper bound on the charge of
spherical objects will be derived in the context of a rela-
tivistic Thomas-Fermi model calculation following the
approach of Miiller and Rafelski [1]. The universal relation
will be analytically derived in the high-mass, infinite time
limit, and as typical examples homogeneously charged
superheavy nuclei and color-flavor locked strangelets
dominated by surface charge will be shown numerically
to approach the universal charge-radius relation. Finite
time for pair creation will then be taken into account and
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the corresponding (higher) charge limits derived. The re-
sults will be compared to earlier charge-mass relations for
strangelets, and to limits for astrophysical objects.
Whereas the derivations do not include general relativity,
it is argued that the universal charge-radius limit should
also apply approximatively to black holes, and in fact the
results agree with a limit derived for black holes in general
relativity.

In a continuous approximation at zero temperature
(more about finite temperature effects later) the number
density of electrons 7, is given by the electron mass m, and
Fermi energy u, via

[+ e = mi”
¢ 3772

O(ue™ +edp —m,). (1)
Here the effective chemical potential u¢f = u, — ed,
where ¢ is the electric potential, and the 6 function takes
into account that u, must exceed the electron mass. In the
usual Thomas-Fermi model describing neutral atomic sys-
tems one takes the energy needed to add an additional
electron, uS" = m,. In the present context the focus is
on maximally charged rather than neutral systems, and
here one instead takes u™ = —m,, corresponding to the
top of the negative energy sea [1]. This represents a situ-
ation where all levels accessible to spontaneous vacuum
decay are filled, and as shown in [1,2] it reproduces the
results of single-particle calculations carried out for core
charges up to a few hundred that demonstrate how more
and more real electron states dive into the negative energy
continuum as the core charge increases, leading to the
creation of a negatively charged vacuum. Thus

_ [ed)? — 2m e

¢ 372

0(edp — 2my,). 2

In regions of space containing only electrons, Poisson’s
equation is given by V?(e¢) = 4me’n,, or in dimension-
less units, where the radial coordinate & = m,r, and the
normalized potential y = e¢/m,, with a = €2,
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In regions with additional charge, a corresponding source
term must be added to the right-hand side of Poisson’s
equation. Two illustrative types of core charge distributions
have been considered: a uniformly charged spherical core
(like a nucleus) and a uniformly charged spherical shell
with no internal charge (like a color-flavor locked quark
matter lump or a large, perfectly conducting nuclear matter
system, where the net core charge moves to the surface).
Together these idealized distributions span the likely range
of real distributions and, as shown in the following, they
lead to identical results for the screened charge in the limit
of large system radius.

Boundary conditions for Poisson’s equation are Vy — 0
for ¢ — 0 and y — 0 for £ — oo. But the actual behavior of
y for large ¢ is explicitly known in the maximally charged
case. Denote the total (positive) core charge by Z.,,. and
the total number of electrons by N,. Then Z,, = Z ;. —
N, > 0 is the net charge of the maximally charged system
seen by an observer outside the radius &,, where the
electron density drops to zero, y(&,) = 2 (corresponding
to e¢p = 2m,). But to this observer

Zo
y=—— for £ =¢,. )
£
Using this relation for ¢ = &, gives
2
z,, = M2 (5)
o

where r, denotes the physical radius corresponding to & =
&,. In the bulk of a homogeneously charged core electrons
neutralize the local core charge, and a deviation from local
charge neutrality occurs only very close to the surface. As
confirmed by numerical solutions of Poisson’s equation the
characteristic width of the screening electron cloud outside
the core charge is of order m,! or a few hundred fm
(deviations from local charge neutrality occurs within a
similar zone inside the surface). Thus in the limit of r, >
m, ! the width is small compared to the physical radius of
the core R, and to good approximation the net charge of a
maximally charged spherical system with R>> m,! =
4 X 10% fm is therefore (since R = r,)
2m,R

Zo=——==071R;, =71 X 10"Ry,.  (6)
a

For objects with density of order nuclear matter density
Ry, = A'/3. Therefore, for such objects charge and baryon
number are related by

Z., =~ 0.7A3  for A > 108. (7)

Figure 1 shows how well the universal charge-radius
relation fits numerical solutions to the relativistic
Thomas-Fermi model at large radius. The example here
is for color-flavor locked strangelets composed of a core of

1x10° T T T T
1x10° | ]
1x10" | 4
1x10° F 4
100000 F
10000 F

1000

FIG. 1 (color online). Charge as a function of scaled radius £.
The lower (dotted, blue) line represents the universal charge-
radius relation Z,, = 2£/a valid for large radii and infinite time.
The upper (dashed, green) line is the quark charge of color-flavor
locked strangelets, and the middle points with fitted (solid, red)
curve shows the maximal net charge Z as calculated numerically
from the relativistic Thomas-Fermi model. As can be clearly
seen, the electron screening due to the supercritical electric field
becomes important for & > 0.1, and the universal charge-radius
relation is a good representation for & > 1.

equal numbers of up, down, and strange quarks, leading to
zero quark charge density in the bulk of the core, but with a
core surface charge due to surface depletion of strange
quarks, so that Z. =~ 0.3A%3 [3] and radius Ry, =
1.1A'3 (such a system has a discontinuity in dy/dé at
the core surface in addition to the boundary conditions
previously described for the Poisson equation). One clearly
sees how the actual solution of Poisson’s equation for the
net screened charge shifts from Z,, = Z,. to the universal
relation Z,, = 2£/a when going from small (¢ < 1) to
large (£ > 1) radii. Similar behavior is found for systems
with other Z,..(A) dependence and regardless of whether
the core charge is uniformly distributed, or distributed as a
surface charge as in the case of strangelets and for cores
that behave as ideal conductors. In all cases tested, the
maximal charge approaches the same universal charge-
radius relation Z,, = 0.71Ry,, for m,R = & > 1 (physical
radius R exceeding 4 X 10? fm) as expected.

So far the calculations have assumed a static situation
with infinite time available to fill all accessible electron
states. However, the pair formation process involves tun-
neling and the rate for this (number of pairs produced per
volume per time) has been shown to be [4]

221
( ) Z 2exp( nwf> )

where the critical field is E, = m2/a'/? = 1.3 X
10'° V/cm. Taking E = Za'/?/R? to represent the “sur-
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face region” of the spherical charge distribution studied
here, and including only the leading » = 1 term in the sum,
this corresponds to

mé a’7Z? §2
W= W exp(—W&) (9)

Taking the active charge producing layer to have a
volume V = 47R?AR, with thickness AR = m !, assum-
ing WV = —dZ/dt, and defining a characteristic time
scale 7 for charge equilibration from dZ/Z = —dt/7,
this leads to a time scale

7 xexp(x) = (5.5 X 1077 s)xexp(x),  (10)

e

T =

where x = 7£%/aZ. Because of the exponential a finite
time available for pair production corresponds to a
(roughly) fixed value of x for a wide range of 7 (it also
means that the results do not depend crucially on the
assumptions about V; taking V = 47R3/3 instead of the
surface layer chosen makes little difference to the charge
relations below). In other words, pair production in a finite
time gives a maximum charge value which is proportional
to &2, rather than &, as was the case with infinite time
available. For example, for 7 = 1 s the maximally allowed
charge becomes

Zi, =~ 11282 =T X 10752, =7 X 1075423, (11)

where the last equality assumes nuclear matter density. For
7 = 10'" yr one gets very similar results, except for divid-
ing the numerical prefactors by 2.0, whereas a typical weak
interaction time scale of 107!% s corresponds to multipli-
cation of the numerical prefactors by 2.4. Concentrating on
Z,s we therefore have two regimes for the universal
charge-radius relation. For Z; ((£€) < Z,(£) pair produc-
tion is sufficiently rapid to fill the electron states as as-
sumed in the relativistic Thomas-Fermi model, and
therefore Z = Z,, = 2&/a for 1 < £ < 25. For Z; ((§) >
Zo(&) (€ >25) we have instead Z = Z, = 11.2&%. The
corresponding division between the two regimes in terms
of radius and baryon number (assuming nuclear matter
density) is Ry, = 1.0 X 10* and A = 10'2, respectively.
The higher charge permitted for macroscopic spheres be-
cause of the finite time effect explains why a Van de Graaff
generator can work at potential in excess of 1 MV as would
be the limit with infinite time to screen the charge with
electrons from pair production.

The existence of a universal maximal charge-radius
relation for spherical objects regardless of their physical
nature is interesting in its own right, but it also has appli-
cations to several areas of subatomic physics and astro-
physics as outlined in the following.

It has been speculated that there could exist branches of
metastable superheavy nuclei. If so, the charge of the
maximally ionized superheavy ion should obey the relation
Z=0.7A3 (108 <A<102)orZ=7X 1073423 (A >

10'2). Because the nuclear charge increases almost linearly
with A, charge screening becomes important already for
A = 10° (as also pointed out in [1]), but numerical solu-
tions of Poisson’s equation show that one needs £ > 1 or
A > 108 for the universal relation to become quantitatively
accurate.

The possible existence of metastable or even stable
quark nuggets or strangelets has been widely discussed
[5]. For large chunks of quark matter, which could exist
in our Galaxy as a result of binary compact star collisions,
the (Z, A) relation in the high-mass limit has so far been
taken as either Z =~ 8A4'/3 (for non-color-flavor locked
strangelets with A < 107 [6]), or Z = 0.34%7 (for color-
flavor locked strangelets regardless of A [3]). The possible
importance of charge screening due to supercritical field
electrons was mentioned by Farhi and Jaffe [7], and a first
numerical study was included in [8]. From the discussion
above it follows that the universal relation Z =~ 0.7A'/3
(10 <A <10'?) and Z~7 X 107743 (A >10"2) can
be applied for A > 10% as an upper envelope on the strange-
let charge regardless of the details of the quark phase, and
for color-flavor locked quark matter this envelope repre-
sents the actual maximum ionization state possible, since
the “envelope” value of Z is smaller than the core charge
0.3A4%/3,

Q balls have been suggested in various varieties, some of
which can be charged [9]. Again, the universal relation
derived here should apply.

Turning to astrophysical objects, it is normally assumed
that compact stars such as neutron stars and quark stars are
close to electrical neutrality, since a net positive charge
would attract electrons from the interstellar medium.
However, many papers have dealt with the theoretical
possibility of nonzero charge and its influence on stellar
structure, and limits (typically from arguments related to
stellar stability) have been placed on the charge allowed.
From a comparison of gravitational binding and electric
repulsion, several authors (e.g., [10]) have found that the
net charge of gravitationally bound stars is limited by Z <
10736A, where the baryon number A =~ 10°’ for a typical
compact star, thus Z < 10?!. From the universal relation
derived above, we have the limit Z;, <7 X 10754%/3,
which is conceptually very different, but happens to give
a larger number for A = 1057, namely Z,, <7 X 103,
This shows that stabilization of charged neutron stars
should result from trapping of real electrons from the
surroundings; there is not enough time to ensure sufficient
numbers of electrons from pair creation. With infinite time
available, the static maximal charge would be Z, =
0.7A'3 = 10", i.., stable with respect to the electric
repulsion, but to approach this limit requires orders of
magnitude more time than the age of the Universe if one
were to start out with a much higher charge.

Strange stars consisting of quark matter are self-bound
due to strong interactions in addition to gravity, so the
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relevant stability limit here comes from a comparison of
the Coulomb energy and the total (strong interaction)
binding energy per baryon. Stability requires Z>a//AR to
be less than a few MeV, which is easily satisfied (by
8 orders of magnitude) for Z = Z ;. Therefore the charge
of strange stars may in principle saturate the universal limit
Z, s~ 7 X 1073A%3_ and such a system could have inter-
esting properties related to pair creation even at zero
temperature in addition to the (much faster) finite tempera-
ture pair creation phenomena discussed in [11].

Black holes are formally exempt from the treatment
above since they are described by general relativity.
However, formation of an astrophysical black hole in-
volves the collapse of a mass (and for the present purpose
charge) that seen from an outside observer only asymptoti-
cally reaches the horizon. Therefore one might expect that
the universal charge-radius relation would indeed be
obeyed by the black hole because it would be obeyed
during the formation process, and the maximal net charge
seen from the outside again should not exceed 7 X
103 R2 . Studies of pair formation in a general relativistic
description of black holes has in fact led to results almost
identical to this [12], a result which is many orders of
magnitude below other limits derived for the maximal
charge of a stable black hole as long as the mass is below
108 solar masses [12].

The derivations above were all based on zero tempera-
ture relations. These relations remain valid for temperature
T < w, —m,=e¢d — 2m,, so at low temperatures ther-
mal electrons can be neglected except near the edge of the
zero temperature maximally charged configuration, where
e — 2m,. The lowest order thermal contribution to the
electron number density in this regime is roughly m3/>T%/2,
giving a thermal contribution to the total charge which is
suppressed by (T/m,)>/? relative to the zero temperature
charge Z; .. Therefore the zero temperature relations pro-
vide good approximations for T < m,.

Another caveat in applying the universal charge-radius
relation derived above to real subatomic or astrophysical
objects is related to the tunneling time scale involved. The
larger the system, the lower the probability of filling all
electron levels on a short time scale. Therefore, even
though the universal relation is independent of the internal
composition and structure of the spherical core, the real-
ization of the universal behavior in realistic systems will
depend somewhat on the nature of the object and its
previous history. Systems with a high electrical conductiv-
ity (e.g., nuclear matter or quark matter) will rearrange any
initial net charge in such a way that the charge gets con-
centrated in a thin surface layer. The small width of this

layer and the surrounding electron atmosphere improves
chances for the universal charge-radius relation to be real-
ized. Other systems, such as strangelets or quark stars
composed of color-flavor locked quark matter, are electri-
cally neutral in the bulk quark phase already [13], and have
only a net quark charge on the surface [3,14], so here the
electron shield is thin almost “‘by construction.” Positively
charged objects in general tend to neutralize by trapping
electrons from the surroundings, e.g., from the interstellar
medium. Therefore, most of the bulk of macroscopic ob-
jects will be close to charge neutral, and the interesting
physics will be related to processes ionizing such objects.
Such ionization will take place “from the outside” and
involve a restricted radial range, again minimizing the time
scale problem.

In conclusion, it has been demonstrated that electrons
created in supercritical fields lead to a universal relation
between the maximal charge and radius of any static,
spherically symmetric object with a size exceeding a few
hundred femtometers. The relation limits the charges of
objects such as superheavy nuclei, strangelets, Q balls,
neutron stars, quark stars, and black holes. For some of
the objects studied, the new limits are more restrictive than
other charge relations and limits existing in the literature.
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