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We regard binary–black-hole (BBH) merger as a map from a simple initial state (two Kerr black holes,
with dimensionless spins a and b) to a simple final state (a Kerr black hole with mass m, dimensionless
spin s, and kick velocity k). By expanding this map around a � b � 0 and applying symmetry
constraints, we obtain a simple formalism that is remarkably successful at explaining existing BBH
simulations. It also makes detailed predictions and suggests a more efficient way of mapping the
parameter space of binary black-hole merger. Since we rely on symmetry rather than dynamics, our
expansion complements previous analytical techniques.
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In binary–black-hole (BBH) merger, two black holes A
and B (with masses Ma, Mb, and spins a, b) inspiral due to
the emission of gravitational radiation and eventually
merge to form a final black hole with mass m, spin vector
s, and recoil (or ‘‘kick’’) velocity k. How do the final
quantities fm;k; sg depend on the initial quantities
fMa;Mb; a;bg? This is a classic problem in general rela-
tivity (GR), with important implications for astrophysics,
cosmology and gravitational-wave (GW) detection. For
example, when two galaxies merge, their central super-
massive black holes also merge. The final quantities
fm;k; sg from these supermassive BBH mergers are linked
(see [1] and references therein) to a variety of astrophysical
observables including: (i) the quasar luminosity function;
(ii) the location of quasars relative to their host galaxies;
(iii) the orientation and shape of jets in active galactic
nuclei; (iv) the correlation between black-hole mass and
velocity dispersion in the surrounding stellar bulge; (v) the
density profile in galactic centers. The quantities fm;k; sg
are also intimately related to the spectrum of quasinormal
ringdown modes after BBH merger—a key observable
for probing black holes and strong-field GR with GW
detectors.

Following recent numerical breakthroughs [2–4], a
number of groups can now simulate entire BBH mergers.
In particular, they can choose a set of initial quantities
fMa;Mb; a;bg and compute the corresponding final quan-
tities fm;k; sg. As more of these extremely time-intensive
simulations have gradually accumulated, certain patterns
and trends have emerged. In previous work, some of these
patterns have been described by empirical fitting functions
[5,6] which are loosely inspired by (but not derived from)
post-Newtonian formulae [7]. In this Letter, we show how
these same patterns (and others) may in fact be derived
from elementary symmetry arguments. This perspective
has several advantages which make it complementary to
post-Newtonian and numerical techniques. As we shall
explain, the resulting formalism: (i) provides a simple

conceptual understanding of BBH merger, accessible to
nonexperts; (ii) makes a host of new and derived predic-
tions which go beyond the fitting formulas [5,6];
(iii) suggests an efficient way to map out the parameter
space of BBH mergers with simulations; and (iv) provides
a map fMa;Mb; a;bg ! fm;k; sg which is useful for astro-
physical applications (including semianalytic models or
N-body simulations of black-hole growth in galaxy merg-
ers and dense stellar clusters) which wish to include BBH
mergers, but cannot hope to follow the detailed merger
dynamics.

Although the merger process involves complicated non-
linear dynamics, the initial and final states of the system
are rather simple and symmetric. The initial state consists
of two widely separated Kerr black holes, and the final state
is a single Kerr black hole. The idea of this Letter is to see
how much we can learn by considering the merger process
as a map between these simple initial and final states,
ignoring as much as possible the detailed dynamics in
between. Under three operations (rotation ‘‘R,’’ parity
‘‘P,’’ and exchange ‘‘X’’), the initial and final states trans-
form according to simple rules. The dependence of the
final state on the initial state is constrained to be consistent
with these rules. We present a naive formalism based on
systematically applying these symmetry considerations to
a well chosen Taylor expansion.

Imagine two black holes, A and B, in a circular orbit [8].
The orbit gradually shrinks due to gravitational-wave
emission, until A and B eventually merge. Consider an
initial instant when the holes are far apart—far enough
that they may be approximated as two Kerr black holes
with well-defined masses (Ma and Mb) and dimensionless
spins (a � Sa=M2

a and b � Sb=M2
b), orbiting in a well

defined plane that is perpendicular to the initial (dimen-
sionless) orbital angular momentum L0=M

2 (where M �
Ma �Mb, and GN � c � 1). Long after the merger is
complete, the gravitational radiation has total energy Erad

and total angular momentum Jrad, and the final Kerr black
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hole has dimensionless mass m � Mf=M, dimensionless
kick velocity k (relative to the center of mass), and dimen-
sionless spin s � Sf=M2

f.
At the initial instant mentioned above, we define an

orthonormal triad fe�1�; e�2�; e�3�g as shown in Fig. 1: e�3�

is the direction of the orbital angular momentum, e�1� is the
direction from A to B, and e�2� � e�3� � e�1�. Then the
circular BBH’s initial state is specified by 7 numbers: the
mass ratio q � Mb=Ma and the spin components

 ai � a � e�i� bi � b � e�i� (1)

relative to the orthonormal triad. Similarly, let us convert
the final vectors into their separate triad components

 ki � k � e�i� si � s � e�i�: (2)

If we apply a global three-dimensional rotation R to the
entire binary system (as if it were a single rigid body),
initial and final quantities like a, b, k, and s rotate as
vectors—as do the triad elements e�i�. Therefore, the cor-
responding triad components (ai, bi, ki, and si) transform
as scalars under R. By working with triad components, all
of our subsequent formulas are manifestly consistent with
rigid three-dimensional rotations R.

We can view any final quantity f (such as m, si, or ki) as
a function of the initial quantities

 f � f�q; a1; a2; a3; b1; b2; b3�: (3)

Let us Taylor expand this function around a � b � 0:

 f � fm1m2m3jn1n2n3�q�am1
1 am2

2 am3
3 bn1

1 b
n2
2 b

n3
3 : (4)

Since a Kerr black hole has maximum spin Si 	 M2
i , jaj

and jbj are both	 1 and it is not unreasonable to hope that
the Taylor series might be convergent over most or even all
of this range of initial spins.

We will now use additional symmetries to restrict the
coefficients in this expansion. First consider a parity trans-
formation P that reflects every point of the binary system
through the origin (the center of mass). Under P, the mass
ratio q is unchanged, while the triad components transform
as

 

fa1; a2; a3g ! f�a1;�a2; a3g

fb1; b2; b3g ! f�b1;�b2; b3g
: (5)

Thus, each term on the right-hand side of Eq. (4) picks up a
factor of ��1��, where

 � � m1 �m2 � n1 � n2: (6)

If f transforms under P as f ! �
�Pf, the coefficients in
Eq. (4) must satisfy the constraint

 fm1m2m3jn1n2n3�q� � �
�P��1��fm1m2m3jn1n2n3�q�: (7)

In other words, if f is even (odd) under P, then
fm1m2m3jn1n2n3�q� must vanish when � is odd (even).

Finally, we apply an ‘‘exchange transformation’’ X. This
leaves the physical system absolutely unchanged, and sim-
ply swaps the labels of the two black holes, A$ B. Under
X, the mass ratio transforms as q! 1=q, while the triad
components transform as

 

fa1; a2; a3g ! f�b1;�b2; b3g

fb1; b2; b3g ! f�a1;�a2; a3g
: (8)

If f transforms under X as f ! �
�Xf, the coefficients in
Eq. (4) must satisfy the constraint

 fm1m2m3jn1n2n3�q� � �
�X��1��fn1n2n3jm1m2m3�1=q�: (9)

Equivalently, and more conveniently, if f transforms under
PX (P followed by X, or vice versa) as f ! �
�PXf, the
coefficients in Eq. (4) must satisfy the constraint

 fm1m2m3jn1n2n3�q� � �
�PXf
n1n2n3jm1m2m3�1=q�: (10)

The transformation laws under P, X, and PX, for various
final quantities f, are summarized in Table I.

Equations (4), (7), and (10) imply a number of results
that are exact (i.e., valid to all order in the Taylor expan-
sion). For example, if the initial spin configuration has a /
b / e�3�, then � � 0 and parity requires s / e3 and k3 � 0.
In the equal-mass case, q � 1 � 1=q and Eq. (10) de-
mands that all final quantities odd under PX (like ki) vanish
for a � b. Again in the equal-mass case, if the initial spin
configuration satisfies �a1; a2; a3� � ��b1;�b2; b3�, then
Eq. (8) becomes the identity mapping and all quantities
odd under X (like s1, s2, k1, k2) must vanish.

Although these exact results are interesting, the real
power of our formalism lies in the many approximate
predictions that it makes. To illustrate this, consider the
quantity k1. From Table I, k1 has �
�P � �1 and �
�PX �
�1. Start from the general Taylor expansion

 k1 � km1m2m3jn1n2n3
1 am1

1 am2
2 am3

3 bn1
1 b

n2
2 b

n3
3 : (11)

The zeroth-order term k000j000
1 vanishes by Eq. (10). At first

order, the Taylor expansion has six terms (one for each of
the spin components fa1; a2; a3; b1; b2; b3g). But con-

A B
e 

(1)

e 
(2)e 

(3)

FIG. 1. The orthonormal triad presented in the text.

TABLE I. Transformation under P, X, and PX, for various
final quantities f.

f m, Erad, s3, Jrad
3 s1, s2, Jrad

1 , Jrad
2 k1, k2 k3

�
�P � � � �

�
�X � � � �

�
�PX � � � �
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straints (7) and (10) cut this down to a single term:

 k1 � k001j000
1 �a3 � b3�: (12)

Thus, at leading order, we predict k1 / �a3 � b3�, a trend
seen in simulations. But we also predict that this leading-
order behavior should be corrected by quadratic terms of a
specific form. Although the naive Taylor expansion con-
tains 21 new terms at 2nd order in spin, Eqs. (7) and (10)
reduce this to only 5 new terms, yielding the general
2nd order formula
 

k1 � k001j000
1 �a3 � b3� � k

002j000
1 �a2

3 � b
2
3�

� k200j000
1 �a2

1 � b
2
1� � k

110j000
1 �a1a2 � b1b2�

� k020j000
1 �a2

2 � b
2
2� � k

100j010
1 �a1b2 � b1a2�: (13)

This expansion could be continued to 3rd order and be-
yond. At each order, we obtain more terms—although far
fewer than a naive Taylor expansion would suggest.

Our symmetry arguments are unable to determine the
numerical values of the 6 coefficients (k001j000

1 , etc.) in
Eq. (13). These coefficients must be calibrated by 6
equal-mass simulations with independent initial spin con-
figurations. If each simulation measures a reliable value for
k1, we can simply solve for these coefficients. Each of
these simulations should be performed at a fixed value of
some inspiral parameter (such as the orbital separation r0

or angular momentum L0), which monotonically varies as
the orbit shrinks. Having determined the coefficients, one
can predict (with 2nd-order accuracy) the value of k1

resulting from any arbitrary configuration of the initial
spins at the same fixed value of the inspiral parameter.
Post-Newtonian methods [7] can then relate coefficients
determined at other fixed inspiral parameter values [10].

Similar arguments to those given in the k1 example
apply to any final quantity f, including the final mass m,
and the magnitude and components of k and s.

The explanatory power of this ‘‘spin expansion’’ formal-
ism is illustrated by a few simple examples. (For more
details, we refer the reader to a subsequent paper [10], in
which we discuss the formalism’s new predictions in more
depth, and test them in detail against currently available
simulations.) We begin with the case of equal-mass BBHs
with spins aligned or antialigned with L0 (i.e., a / b /
e�3�). Expanding the final kick ki to 2nd order in initial
spins yields 3 terms for jkj2, and 4 terms each for the final
spin s3, and mass m [11]. Figure 2 shows our best fits for
this configuration. As seen in the figure, the data are well
described by the linear terms in the spin expansion, and the
fits also show evidence for small second order corrections
of the predicted form.

Figure 3 shows our fits for the ‘‘superkick’’ configura-
tion: equal-mass BBHs with equal and opposite spins and
ai � �bi � a�cos�; sin�; 0�. The leading-order terms in
the spin expansion explain the previously noticed [13,14]

behavior k3 � Aa cos����1�, where A and �1 are
constants (top panel in Fig. 3). Keeping terms to
2nd order, the spin expansion also correctly predicts that
the final quantities f � fJrad; s3; Eradg all behave as f �
B� Ca2 cos�2���2�, where B, C, and �2 are constants
(bottom 3 panels in Fig. 3). This cos�2���2� behavior
highlights the power of the spin expansion to go beyond
previous linear post-Newtonian fitting formulas to uncover
and explain new and essentially nonlinear behavior in the
simulations.

Finally, we examine the case of arbitrarily oriented
initial spins. From each of the 8 simulations in [15] we
have jsj and m. We use the coefficients obtained from our
fits in Fig. 2 for the terms that depend only on a3 and b3.
Then our 1st-order fits for jsj (with 3 free parameters) and
m (with zero free parameters) are shown in Fig. 4. We stress
that this data set is not described by any previous fitting
formula. The spin expansion gives the first explanation for
the distribution of points Fig. 4.

In this Letter, we introduce a new spin expansion of final
quantities f in triad components ai, bi of the initial spins.
Using the transformation properties of f, ai, bi and q under
parity P and exchange X, we dramatically reduce the
number of terms that one might naively expect. Without
resorting to the sophisticated machinery of numerical rela-
tivity and the post-Newtonian expansion, we obtain some
detailed (and often new) quantitative understanding of the
final state of BBH merger. This clarifies the separation

FIG. 2 (color online). Equal-mass BBHs with a / b / e�3�.
Final kick jkj, spin s3, and mass m are plotted versus a3. The
five curves in the top two panels correspond to the five simula-
tion sequences in [12]; within each sequence b3 takes on the
values shown in the bottom panel as a3 is varied. For presenta-
tion purposes we have exchanged a3 and b3 for the case b3 �
�0:584. Cross and triangle data points for the mass m are taken
from [16,17], respectively.
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between the nonlinear dynamics of Einstein’s equations
and our more elementary nondynamical considerations.

Our approach complements both post-Newtonian ap-
proximations and numerical relativity. Post-Newtonian
methods provide accurate predictions in the weak-field
inspiral regime, but break down during the later stages of
the merger. By contrast, the symmetries under P and X
implicitly hold through the entire merger.

Only numerical relativity can model the late stages of
the merger, but simulations remain computationally ex-
pensive. The spin expansion offers enormous computa-
tional savings in mapping the seven-dimensional
parameter space of BBH initial states fq; ai; big. Even 10
grid points along each direction would mean 107 simula-
tions—a hopelessly large number. However, the values
fm; ki; sig from 16 independent simulations determine the
spin expansion coefficients up to 2nd order at fixed mass
ratio q. Then, with 10 grid points for q, a mere 160
simulations could map the space fq; ai; big. Further reduc-
tions are possible if the q dependence of our coefficients
can be identified analytically. The spin expansion may also
help in identifying systematic errors with forbidden geo-
metrical dependence on the initial spins.

The spin expansion is useful for astrophysics and cos-
mology—e.g., allowing BBH results from numerical rela-
tivity to be efficiently included in simulations of
cosmological structure formation or black-hole growth.

These simulations cannot resolve the short scales relevant
to supermassive BBH merger, and must instead rely on
maps from the initial to final state such as those presented
in this Letter. The spin expansion predicts these final
quantities for arbitrary initial spin configurations, speci-
fied once gravitational radiation (rather than dynamical
friction) dominates the binary evolution.
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FIG. 4 (color online). Equal-mass BBHs with equal spin mag-
nitudes and generic spin orientations. Square data points 1
through 8 indicate the final spin jsj and mass m for eight
simulations listed from left to right in Table I of [15]. Red X’s
show our predictions for these final quantities.

FIG. 3 (color online). Equal-mass BBHs with equal and oppo-
site spins lying in the orbital plane. Kick velocity k3, radiated
angular momentum Jrad, final spin s3, and percentage of radiated
energy Erad are plotted against the angle � between the initial
spin a and e�1�. The blue curves show fits to the square data
points taken from [13], while the red curves show fits to the
triangle data points of [14].
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