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We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum
stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole
of the resolvent of the memory kernel from which we extract the zero-frequency cumulants of the current
using a recursive scheme. The finite-frequency noise is expressed not only in terms of the resolvent, but
also initial system-environment correlations. As an illustrative example we consider electron transport
through a dissipative double quantum dot for which we study the effects of dissipation on the zero-
frequency cumulants of high orders and the finite-frequency noise.
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Full counting statistics (FCS) has recently attracted in-
tensive theoretical [1] and experimental [2] attention. The
interest stems from the usefulness of FCS as a sensitive
diagnostic tool of stochastic electron transport through
mesoscopic systems. Detectable mechanisms include
quantum-mechanical coherence, entanglement, disorder,
and dissipation [1]. Mathematically, FCS encodes the com-
plete knowledge of the probability distribution P�n; t� of
the transmitted number n of electrons or, equivalently, of
all corresponding cumulants. Nonzero higher order cumu-
lants describe non-Gaussian behavior. The study of count-
ing statistics for stochastic processes in general is of broad
relevance for a wide class of problems, also outside meso-
scopic physics. For example, rare events, whose study has
become an important topic within nonequilibrium statistics
of stochastic systems in physics, chemistry, and biology
[3], are reflected in higher order cumulants. Efficient meth-
ods for evaluating the counting statistics of stochastic
processes are therefore of urgent need.

In this Letter, we present a method which unifies and
extends a number of earlier approaches to FCS within a
generalized master equation (GME) formulation [4–6].
The earlier approaches have in practice been limited to
systems with only a few states [4,6], or only the first few
current cumulants [5]. In contrast, our theory enables
studies of a much larger class of problems: Evaluation of
zero-frequency current cumulants of very high orders for
non-Markovian systems with many states is now possible.
Furthermore, the method allows us to develop a general
approach to the finite-frequency current noise of non-
Markovian transport processes. In the case of finite-
frequency noise, we show that not only the memory kernel
but also initial system-environment correlations are cru-
cial. Such correlations can be, and have been [6,7], ne-
glected for non-Markovian processes at low frequencies,

but must be included at frequencies comparable with the
internal frequencies of the system. We demonstrate our
methods on a system of recent experimental relevance,
namely, transport through a dissipative double quantum
dot [7,8], but they may easily be applied to other electronic
(or photonic) counting systems, as well as other counted
quantities, such as heat or work, in nonequilibrium systems
[9].

Non-Markovian GME.—Consider a nanoscale transport
system governed by a generic non-Markovian GME of the
form [10,11]

 

d
dt
�̂�n; t� �

X
n0

Z t

0
dt0W �n� n0; t� t0��̂�n0; t0� � �̂�n; t�:

(1)

Here, the reduced density matrix of the system �̂�t� has
been resolved into components �̂�n; t� corresponding to the
number of electrons n passing through the nanosystem
within time-span �0; t�. The memory kernel W describes
the influence of the environment on the dynamics of the
system, while the inhomogeneity �̂ accounts for initial
correlations between system and environment. Both W
and �̂ decay with time, usually on a comparable time scale,
so that �̂ is irrelevant for the long-time limit. The inhomo-
geneity �̂ does, however, play a crucial role at finite times.
The probability distribution for the number of transferred
charges is P�n; t� � Trf�̂�n; t�g. The corresponding cumu-
lant generating function (CGF) S��; t� is defined as
eS��;t� �

P
nP�n; t�e

in�. In Laplace space Eq. (1) leads to
the algebraic expression �̂��; z� � G��; z���̂��; t � 0� �
�̂��; z��, where G��; z� � �z�W ��; z���1 is the resol-
vent of the kernel, and �̂��; z� �

P
n

R
1
0 dt�̂�n; t�e

in��zt

and similarly for �̂��; z� and W ��; z�. Inverting the
Laplace transformation, the CGF then becomes
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 eS��;t� �
1

2�i

Z a�i1

a�i1
dzhG��; z�iezt; (2)

where a is a real number, chosen such that all singularities
of the integrand are situated to the left of the vertical line of
integration. We have moreover introduced the notation
hG��; z�i � TrfG��; z���̂��; t � 0� � �̂��; z��g. Equa-
tion (2) contains the full statistical information about the
charge transfer process. It is a powerful formal result, but it
also leads to useful practical schemes, as we shall now
demonstrate.

Zero-frequency FCS.—Consider first the zero-
frequency cumulants of the current, defined as hhImii �
d
dt

@mS��;t�
@�i��m j�!0;t!1, m � 1; 2; . . . . We assume that the sys-

tem with the counting field � set to zero tends exponen-
tially to a unique stationary state determined by the 1=z
pole of the resolvent G�� � 0; z�. The stationary state is
given by the eigenvector corresponding to the
zero eigenvalue of W �W �� � 0; z � 0�, i.e.,
limt!1 �̂�t� � �̂stat, where �̂stat is the normalized solution
to W �̂stat � 0. With finite values of �, an eigenvalue
�0��; z� develops adiabatically from the zero eigenvalue,
such that �0�0; z� � 0, and the long-time behavior is de-
termined by the isolated pole structure 1=�z� �0��; z�� of
G��; z� close to zero. This pole z0��� solves

 z0 � �0��; z0� � 0; (3)

and goes to zero with � going to zero, i.e., z0�0� � 0.
We thus find eS��;t� !D���ez0���t for large t, where
D��� is a time-independent function depending on the
initial conditions and correlations. The current cumulants
then read hhImii � @mz0���

@�i��m j�!0. In the Markovian limit for
the kernel W ��; z! 0� we get z0��� � �0��; 0� as found
in Refs. [4,5].

Recursive scheme.—When the involved matrices are
large, it may be nontrivial to determine the full � and z
dependence of the eigenvalue �0��; z�, and thereafter solve
Eq. (3). Instead, we expand the eigenvalue as �0��; z� �P
1
k;l�0

�i��k

k!
zl
l! c
�k;l� with c�0;L� � 0, and calculate the expan-

sion coefficients recursively using Rayleigh-Schrödinger
perturbation theory [12]:
 

c�K;L� �
XK
k�0

K

k

 !XL
l�0

L

l

 !
hh~0jW

�k;l�
j0�K�k;L�l�ii;

j0�K;L�ii �R
XK
k�0

K

k

 !XL
l�0

L

l

 !
�c�k;l� �W

�k;l�
�j0�K�k;L�l�ii;

(4)

with K, L � 0; 1; 2; . . . . Here, hh~0j solves hh~0jW � 0,
while j0�0;0�ii is the stationary state �̂stat. Moreover,

W ��; z� �W ��; z� �W has been expanded as

W ��; z� �
P
1
k;l�0

�i��k

k!
zl
l! W

�k;l�
with W

�0;0�
� 0. Finally,

the pseudoinverse of the kernel is R �QW�1Q with

Q � 1� j0�0;0�iihh~0j [13]. With the c�K;L�’s at hand we can
solve Eq. (3) for z0��� to a given order in �, and from the
expansion z0��� �

P
1
n�1

�i��n

n! hhI
nii extract the zero-

frequency cumulants of the current:

 hhINii � N!
XN
k;l�0

1

k!

1

l!
P�N�k;l�c�k;l�;

P�K;L� �
XK
n�1

hhInii
n!

P�K�n;L�1�

(5)

with L � 0; 1; 2; . . . , and K, N � 1; 2; 3; . . . . For the aux-
iliary quantity P�K;L�, we have P�K;0� � �K;0, P�0;L� � �0;L,
and P�K;�1� � 0.

We illuminate the recursive scheme by evaluating the
first three cumulants of the current using Eq. (5), the mean
current, the variance (the noise), and the skewness:
 

hhI1ii � c�1;0�;

hhI2ii � c�2;0� � 2c�1;0�c�1;1�;

hhI3ii � c�3;0� � 3c�2;0�c�1;1�

� 3c�1;0��c�1;0�c�1;2� � 2�c�1;1��2 � c�2;1��:

(6)

Higher order cumulants can be obtained in a similar man-
ner, analytically or numerically. Coefficients of the form
c�L;0� are purely Markovian quantities, and the mean cur-
rent is thus not sensitive to non-Markovian effects, whereas
higher order cumulants are [6,15]. From Eq. (4) we find for

the coefficients c�K;L�, e.g., c�1;0� � hh~0jW
�1;0�
j0�0;0�ii,

c�1;1� � hh~0j�W
�1;1�
�W

�1;0�
RW

�0;1�
�j0�0;0�ii, and c�2;0� �

hh~0j�W
�2;0�
� 2W

�1;0�
RW

�1;0�
�j0�0;0�ii. Evaluation of the

pseudoinverse R amounts to solving matrix equations
which is feasible even with very large matrices [14].
Numerically, the recursive scheme is stable for very high
orders of cumulants (> 20) as we have tested on simple
models.

Double quantum dot.—We illustrate our method by
considering a model of charge transport through a
Coulomb blockaded double quantum dot in a dissipative
environment [7]. Maximally one additional electron is
allowed on the double quantum dot. The Hamiltonian of
the double quantum dot is ĤS �

"
2 ŝz � Tcŝx, where the

pseudospin operators are ŝz � jLihLj � jRihRj and ŝx �
jLihRj � jRihLj, respectively. The tunnel coupling be-
tween the two quantum dot levels jLi and jRi is Tc, while
" is their detuning. The pseudospin system is tunnel-
coupled to left (L) and right (R) leads via the tunnel-
Hamiltonian ĤT �

P
k�;��L;R�Vk�ĉ

y
k�
j0ih�j � H:c:�, with

both leads described as noninteracting fermions, i.e., Ĥ� �P
k�"k� ĉ

y
k�
ĉk� , � � L, R. Dissipation is provided by a

reservoir of noninteracting bosons that couple to the ŝz
component of the pseudospin. The Hamiltonian is then
Ĥ � ĤS � ĤT � ĤL � ĤR � ĤB � V̂Bŝz, where ĤB �P
j@!jâ

y
j âj and V̂B �

P
j
gj
2 �â

y
j � âj�.

PRL 100, 150601 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 APRIL 2008

150601-2



To describe charge transport through the system we trace
out the leads following Gurvitz and Prager [16], leading to
an equation of motion for the reduced density matrix �̂ �
��̂00; �̂LL; �̂RR; �̂LR; �̂RL�T of the double dot and the bath
of bosons. The elements �̂ij are still operators in the
Hilbert space of the boson bath. Charges are assumed to
enter the left quantum dot from the left lead and leave from
the right quantum dot via the right lead with energy-
independent rates ���	� � 2�

P
kjVk� j

2��	� "k�� � ��,
� � L, R. This approach is valid to all orders in the tunnel
coupling Tc under the assumption of a large bias across the
system [16].

Next, we consider the electronic occupation probabil-
ities �i � TrBf�̂iig, i � 0, L, R, where TrB is a trace over
the bosonic degrees of freedom. A closed system of equa-
tions is obtained by assuming that the boson bath at any
time is in local equilibrium corresponding to the given
charge state: �̂ii ’ �i 	 �̂i�
�, i � L, R, where

�̂L=R�
� � e�
H
�
�
B =TrBfe�
H

�
�
B g, H�
�B � HB 
 VB, and


 � 1=kBT is the inverse temperature (see, e.g., Sec. IV
C in Ref. [14]). This approximation is valid when the bath-
assisted hopping rates ��
�B �z� (proportional to T2

c , see
below) are much smaller than �L=R. The memory kernel
for this model, with �̂ � ��0; �L; �R�

T , then reads

 W ��; z� �
��L 0 �Rei�

�L �����B �z� ����B �z�
0 ����B �z� �����B �z� � �R

0
B@

1
CA: (7)

Here, the counting field � has been introduced in the off-
diagonal element containing the rate �R ! �Rei�, corre-
sponding to counting of the number of electrons that have
been collected in the right lead. The bath-assisted hopping
rates entering the kernel are ��
�B �z� � T2

c �g
����z
� �

g����z��� with g�
��z� �
R
1
0 dte

�W��t��zt, W�t� �R
1
0 d!J�!�f�1 � cos�!t�� coth�
!=2� � i sin�!t�g=!2,

and z
 � z
 i"� �R=2. The spectral function of the heat
bath is J�!� �

P
jjgjj

2��!�!j�, and below we show
results for Ohmic dissipation, J��!� � 2�!e�!=!c ,
when the rates can be evaluated either analytically (for

!c � 1) or numerically.

In Fig. 1 we show the first three cumulants of the current
as functions of the level detuning " with different dissipa-
tions strengths �. As an illustrative example the 15th
cumulant of the current, hhI15ii, is also shown. As the
dissipation strength is increased, a clear suppression of
the coherent features (with � � 0) is seen. The increased
coupling to the heat bath tends to localize the electron to
one of the two quantum dots, thereby suppressing the
effects of the coherent coupling between them. As a result
a crossover from coherent to sequential tunneling is ob-
served with increasing �. For large �’s, the sequential
tunneling process between the two quantum dots consti-
tutes a ‘‘bottle-neck’’ and the cumulants consequently
approach the Poisson limit hhImii=hhI1ii � 1, m �
1; 2; 3; . . . . The typical behavior of cumulants is, however,

factorial growth, i.e., jhhImiij  cqmm! for some constants
c; q > 0. In the coherent case (� � 0), this behavior is
clearly seen for the 15th cumulant, demonstrating its
high sensitivity to dephasing and decoherence
mechanisms.

Finite-frequency noise.—The expression for the CGF,
Eq. (2), allows us also to study the finite-frequency spec-
trum of the second cumulant of the current, the (symme-
trized) current noise [17], expressed by MacDonald’s
formula as SII�!� � !

R
1
0 dt sin�!t�hhI2ii�t� [18–20],

where hhI2ii�t� � d
dt

@2S��;t�
@�i��2 j�!0. We then find

 

SII�!� � �
!2

2

@2

@�i��2
�hG��; z � i!�i � �!! �!��j�!0:

(8)

In order to evaluate this expression, we need to choose
�̂��; t � 0� appropriately and find the inhomogeneity
�̂��; z� as they enter the definition of hG��; z�i.
Following Ruskov and Korotkov [21] we assume that the
system evolves from t0 � �1, such that the electronic
occupation probabilities at t � 0, where electron counting
begins, have reached the stationary state, i.e., �̂�n; t �
0� � �n;0�̂

stat. For this model the inhomogeneity is inde-
pendent of the counting field [12]:

 �̂�z� �
W �W �� � 0; z�

z
�̂stat: (9)

We see that the effects of the initial correlations accounted

FIG. 1 (color online). Zero-frequency cumulants of the current
as functions of the level detuning " with different dissipation
strengths �. Parameters are � � �L � �R � 0:5, Tc � 0:1,
kBT � 0, !c � 500, and 2�� � 0 (full line), 0.2 (full line
with dots), 0.5 (dashed line), 1 (dashed line with dots). A large
bias is applied across the system.
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for by �̂�z� vanish in the long-time limit. Moreover, since
W �̂stat � 0, we find hG��; z�i � TrfG��; z�G�1�� �
0; z��̂statg=z from which we can calculate the finite-
frequency current noise. We note that only the proper
inclusion of the inhomogeneity ensures a correct finite-
time behavior, such as proper normalization of Trf�̂�t�g �
hG�� � 0; t�i � Trf�̂statg � 1 at all times.

Displacement currents (due to finite capacitances be-
tween quantum dots and leads) can be included in the
finite-frequency current noise via the Ramo-Shockley
theorem [22]. Evaluating the full current noise spectrum
then requires an additional counting field accounting for
tunneling from the left lead [20]. For the shown results we
have included displacement currents and assumed identical
capacitances between the left (right) quantum dot and the
left (right) lead. In Fig. 2 we show the finite-frequency
current noise SII�!� at frequencies around the hybridiza-

tion energy � �
�������������������������
"2 � �2Tc�

2
p

, where signatures are ex-
pected in the current noise spectrum [7,19,22]. Resonances
are not observed exactly at the ‘‘bare‘‘ value ! � �, but
are shifted towards lower frequencies. This renormaliza-
tion occurs due to coupling to the heat bath which dresses
the eigenspectrum of the electronic degrees of freedom,
similar to the Lamb shift in atomic physics. The left figure
shows how the signatures due to the coherent coupling
between the two quantum dots are washed out with in-
creasing temperature. In the right figure, we show how the
frequency shift increases with increasing dissipation
strength, which simultaneously reduces the effect of the
coherent coupling. For larger �’s (� 0:1) a change of line
shape is observed (not shown).

In conclusion, we have presented a general theory for
current fluctuations in non-Markovian quantum transport
systems. Our methods allow us to calculate recursively
zero-frequency current cumulants of very high orders,
governed by a single dominating pole of the resolvent of

the memory kernel, as well as the finite-frequency current
noise, which is given not only by the resolvent, but also
initial correlations. As an illustrative example of our ap-
proach, we have considered transport through a dissipative
double quantum dot for which we have studied the effects
of dissipation and temperature on the current cumulants of
very high orders and the finite-frequency current noise.
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[19] C. Flindt, T. Novotný, and A.-P. Jauho, Physica

(Amsterdam) 29E, 411 (2005).
[20] N. Lambert, R. Aguado, and T. Brandes, Phys. Rev. B 75,

045340 (2007).
[21] R. Ruskov and A. N. Korotkov, Phys. Rev. B 67, 075303

(2003).
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