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The zero-temperature pairing gap is a fundamental property of interacting Fermions, providing a crucial
test of many-body theories in strong coupling. We analyze recent cold-atom experiments on imbalanced
Fermi systems using Quantum Monte Carlo results for the superfluid and normal phases. Through this
analysis we extract, for the first time, the experimental zero-temperature pairing gap in the fully paired
superfluid state at unitarity where the two-body scattering length is infinite. We find that the zero-
temperature pairing gap is greater than 0.4 times the Fermi energy EF, with a preferred value of (0:45�
0:05) EF. The ratio of the pairing gap to the Fermi Energy is larger here than in any other Fermi system
measured to date.
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The pairing gap in strongly coupled Fermi systems is
fundamental in diverse areas of physics including con-
densed matter physics, the physics of atomic nuclei, nu-
clear matter in neutron stars and the phase structure of
dense QCD. In conventional superfluids or superconduc-
tors where weak-coupling methods are reliable, the pairing
gap is very small, of order 0.1% the Fermi energy (EF). In
contrast, in cold atoms systems with large scattering length
and other strongly paired fermion systems such as cuprate
superconductors, dense nuclear and quark matter, the gap
is a substantial fraction of the Fermi energy, and no ob-
vious expansion parameter can be identified. A crucial test
of many-body theories for systems in strong coupling is
their ability to predict the pairing gap at T � 0, which will
allow us to understand how the corrections to BCS theory
evolve from weak coupling, where they are very strong, to
the BEC limit where they are relatively modest.

At the BCS-BEC transition point, which is also called
the unitarity regime, the short-range interaction is tuned to
infinite scattering length. Here all measurable quantities
including the gap are related to their free Fermi-gas coun-
terparts by universal constants since the interaction does
not present an energy scale. Our extracted value of the gap
is 0.45 EF implies that corrections beyond BCS theory
are reduced at unitarity, �=�BCS � 0:65, compared to
weak coupling where the Gorkov result is �=�BCS �

�1=4e�1=3 � 0:45 [1]. A precise knowledge of the pairing
gap in this strong coupling regime is crucial to understand-
ing many physical processes which are controlled by the
magnitude of the pairing gap, such as the cooling of
neutron stars.

Experiments that trap and cool fermion atoms are now
providing new insights [2–6]. Experiments to date have
studied systems containing two hyperfine states of 6Li,
which we label j "i and j #i for convenience. These experi-
ments can tune both the number asymmetry (polarization)
and the interaction strength and thus have the potential to
probe new phases of superfluid matter that are expected on

theoretical grounds. Experiment done in the unitarity re-
gime indicate that two phases are certain to exist involving
three fundamental constants. The superfluid state at T � 0
and number density n can be characterized by the ground-
state energy ESF � ��3=5�EF and the pairing gap � �
�EF with EF � �3�2n�2=3=2 m. The normal state can be
characterized by the binding of a minority spin particle to
the Fermi sea of majority particles, EN � E0 � ��Ef;N ,
where EN is the energy of the normal state, E0 is the energy
of noninteracting particles, and Ef;N is the Fermi energy of
the majority spin population Ef;N � �6�2n�2=3=2 m.

The universal constants have been calculated using
quantum Monte Carlo techniques,[7–11] yielding: � �
0:42�01�, � � 0:50�03�, and � � 0:60�:01�. More recent
calculations of � using both diffusion Monte Carlo and
auxiliary field Monte Carlo [12] indicate that � may be
slightly smaller, � � 0:40�:01�. While these calculations
are approximate, calculations of the respective ground-
state energies are upper bounds and hence provide an
apparently accurate upper bound to the parameter � and
lower bound to � [13]. Measurements of � and � appear to
be consistent within errors with QMC results as shown
below. In contrast the pairing gap parameter � is obtained
from the difference between even- and odd-particle num-
ber simulations, and hence is not a bound on the true value.

In this Letter we show that the recent measurement of
the polarization density in the MIT experiment published
in Ref. [6] can be used to extract the T � 0 pairing gap
rather precisely. Previously the pairing gap has been ex-
tracted from studies of the RF response [14–16]. While RF
spectroscopic studies are very intriguing the extracted gaps
are smaller and inconsistent with the present value. Final-
state interactions must be taken into account in any real-
istic study of the RF response [17].

QMC calculations of the superfluid and normal state
imply that simple descriptions based upon a quasiparticle
picture and these universal parameters are valid over a
wide range of polarizations between zero and one. At
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T � 0 the superfluid� quasiparticle picture appears to
work reliably up to polarization � � �n" � n#�=�n" �
n#� � 0:2 [10], while in the normal state the simple quasi-
particle picture appears to work reliably for polarizations
� 	 0:4 [11]. The phase transition between these two
states is first-order at low temperature. At T � 0 the tran-
sition occurs between an unpolarized superfluid state and a
normal state at a polarization of approximately 0.4 [11,18].
At the transition �� � ��c ’ �, where �� �
��" ��#�=2 and � � ��" ��#�=2 [10,11]. Here the
spin-up and spin-down particle chemical potentials are
�" and �#, respectively. The pairing gap is only slightly
larger than the value required for the stability of a gapless
superfluid with finite polarization at zero temperature. At
finite temperature, superfluid quasiparticles will be ther-
mally excited, polarizing the superfluid; this polarization is
exploited to extract the pairing gap.

The first-order phase transition appears to have been
observed in recent MIT [3] and Rice [4] experiments.
Significant differences remain, however. In particular the
Rice experiment finds a transition directly from zero to full
polarization. Such a transition cannot happen in a bulk
system if the binding of spin-down particles in the normal
state (� � 0:6) is large [18]. Hence the observed polariza-
tion must be related to the unique geometry of the trap. The
MIT experiment has been performed for larger numbers of
particles and more spherical traps, and hence the simple
local density approximation employed here is better suited
for an analysis of these experiments.

The three fundamental constants at zero temperature
uniquely predict the polarization as a function of density
for small enough temperatures and superfluid polarization.
The polarization in the two phases are

Superfluid state with a small polarization.—In the uni-
versal regime the energy density, pressure and the chemical
potential of the unpolarized superfluid state are given by
�SF � �k5

F=�10�2m�, PSF � �k5
F=�15�2m�, and � �

�k2
F=2 m, respectively. Here kF is the Fermi momentum

kF � �3�2n�1=3. In Ref. [10] we calculated the quasipar-
ticle (qp) dispersion relation by introducing additional
fermions to the unpolarized superfluid state. The dispersion
curve for qp’s measured relative to � is given by

 !qp�k� � �
���������������������������������������������������������������������
�1� a2�x� x0�

2 �Of�x� x0�
4g�

q
; (1)

where x � k2=k2
F, x0 ’ 0:83�3�, and a2 ’ 1:3�2�. The

higher order terms are negligible at small polarization.
The energy to add an additional spin-up fermion to the

unpolarized system in the vicinity of the normal-superfluid
transition is anomalously small in strong coupling because
��c 
� at the first-order transition [10]. Zero-
temperature QMC calculations suggests that interactions
between quasiparticles in the superfluid are weak at low
polarization. Hence the number density and pressure of
additional spin-up quasiparticles are given by the noninter-

acting Fermi-gas expressions with the dispersion relation
in Eq. (1)

 nqp" �
Z d3k

�2��3

�
1� exp

�!qp�k� � ��

T

��
�1
; (2)

 Pqp" � T
Z d3k

�2��3
log

�
1� exp

�!qp�k� � ��

T

��
: (3)

In contrast, nqp# ’ 0, since the energy to add additional
spin-down particles is !qp# ’ ���c � �� � T. Hence the
polarization density n" � n# ’ nqp".

We anticipate that the gap will decrease due to both
finite temperature and polarization. For the present
calculations we assume that for low temperature the pair-

ing gap decreases slowly according to ��T� � ��0��������������������������������
1� �T=tcEF�2

p
. The coefficient tc characterizes the tran-

sition temperature. The zero-temperature pairing gap is a
constant fraction � of the Fermi energy: ��0� � �EF. The
temperature dependence of the gap is determined by tc and
the polarization. Its calculation is beyond the scope of this
work, a mean-field treatment of the polarized finite tem-
perature superfluid phase is discussed in Ref. [19]. Here we
take tc in the range 0.05–0.25; even this huge range has a
modest effect on the extracted pairing gap at zero
temperature.

Normal state at high polarization.—Through QMC
studies we have determined the energetics of the normal
state at high polarization. Near unit polarization, the en-
ergy of a spin-down particle is given by

 E#�k� �
k2

2 m
� �

k2
F"

2 m
; (4)

where � � 0:6 characterizes the strength of the energy
shift due to interactions. Earlier work has shown that this
provides a good description of QMC results for the energy
at zero temperature [11,18]. At finite temperature we adopt
an independent-particle model in which the interactions
modify the single-particle levels and are able to fit the
QMC results. A symmetric form for the dispersion relation
that also fits the QMC results is given by

 E"�k� �
k2

2 m
� �

k3
F#

4 m~kF
; E#�k� �

k2

2 m
� �

k3
F"

4 m~kF
;

(5)

where ~kF � �k
6
F"
� k6

F#
�1=6. We note that Eq. (4) and (5)

predict the same energy density in the limit kF# ! 0.
We assume a harmonic trap and work in the local density

or Thomas-Fermi approximation. The physical state at any
location in the trap is completely determined by the local
chemical potentials �" � �� �� and �# � �� ��.
The chemical potential � � �� VTrap�r�, where
VTrap�r� � 0:5@!�r=r0�

2 and r0 � @=
�����������
@!m
p

while �� is
constant since the trap does not distinguish between the
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different fermion species. Using the notation of refer-
ence [6] distances are scaled relative to the radius R" at
which the zero-temperature spin-up density vanishes. The
radius R# is similarly defined as the radius at which the
zero-temperature spin-down density vanishes. The tem-
perature T0 is scaled to the Fermi energy of a noninteract-
ing Fermi gas at r � 0 with the same density profile as the
exterior cloud. Similarly the densities are measured in units
of n0, where n0 is the density of a noninteracting Fermi gas
at r � 0 with the same density profile as the exterior cloud.
At low temperature the density profiles predicted by the
theory discussed above are shown in Fig. 1. The inner
superfluid region and the outer normal region separated
by a first-order transition are clearly seen. The transition is
characterized by �s and �n—the polarization’s in the
superfluid and normal phase, respectively. As mentioned
earlier, at low temperature �N ’ 0:4, while �s increases
rapidly from zero at zero-temperature with increasing tem-
perature due to the low excitation energy of spin-up qua-
siparticles in the vicinity of the transition. In our
implementation of the equation of state for the normal
phase, thermal effects on the density profiles are negligible
except close to r � R# and r � R".

The density distribution of the spin-up particles (major-
ity species) between R# and R" provides a measure of the
temperature and the chemical potential of the spin-up
particles. Similarly, the density distribution of the unpolar-
ized superfluid state at the origin provides an independent
measure of the average chemical potential � assuming the
calculated value of �. Since � � 0:6 describes the normal
state near unit polarization, the radius R# can independently
provide a measure of the spin-down chemical potential.
Thus, the two radii, the density at large radii, and the
central density measure the two chemical potentials and
the temperature and provide a consistency check between
the calculated values of � and � in extracting � and ��.

In order to compare with experimental results, we as-
sume a specific ratio of the density at the origin to the
maximum density of a cloud of free fermions with the same
density distribution for r > R", which is equivalent to
assuming a specific average chemical potential �. The
values of the ratio R#=R", the total polarization Ptot in the
trap, the transition radius Rc, and the polarization as a
function of radius are then predicted for various values of
the pairing gap and the temperature. We find that present
measurements provide strong constraints on the pairing
gap even though the temperature is not very precisely
determined in the lowest temperature measurements.

Figure 2 compares the calculated spin-up and spin-down
densities as a function of radius. We used a normalized
temperature T0 � 0:03 and a normalized density at the
origin n"�r � 0�=n0 � n#�r � 0�=n0 � 1:72 consistent
with the experiment. This simple model reproduces the
radius of the transition, the radius where the spin-down
density goes to zero, and the overall polarization in the

trap. The calculated overall polarization in the trap is 0.44
for these values of the parameters, and the measured value
is 0.44(0.04) [6].

In Fig. 3 we compare the measured and calculated
polarization at T0 � 0:03 and T0 � 0:05. Results for differ-
ent values of � and tc are shown. At T0 � 0:03 the polar-
ization is approximately 0.12 at the interface at
r=R" � 0:43, consistent with the experimental results.
The qualitative and quantitative features of the measured
polarization at T0 � 0:03 are captured by the normal phase
at r=R" * 0:45 and a thermally polarized superfluid phase
for r=R" & 0:4—consistent with a first-order transition
somewhere in between. In contrast, the comparison be-
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FIG. 1 (color). Spin-up and spin-down densities and polariza-
tion versus radius predicted by theory for � � 0:43 at T0 � 0
(dashed) and T0 � 0:03 (solid) are shown. The universal pa-
rameters � and � are taken as 0.4 and 0.6, respectively. For T0 �
0:03 the local value of � shown by the dot-dashed curve was
obtained using tc � 0:1.
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FIG. 2 (color). Spin-up and spin-down densities theory and
experiment for � � 0:43, � � 0:4 and � � 0:6 at T0 � 0:03.
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tween theory and data at T0 � 0:05 suggests that the su-
perfluid extends further out. Polarization in the superfluid
state (thin solid black-line) extrapolated to p ’ 0:4 pro-
vides a better description of the data than the normal state.
A clear signature of a first-order transition is also absent. In
both cases there appears to be evidence for a mild decrease
in the gap with increasing T=EF and polarization.

For a fixed central density and R", our analysis predicts
that the phase-boundary Rc moves outward in the trap with
increasing temperature. This behavior is sensitive to the
thermal properties of both phases at low temperature. At
small temperature and polarization, the thermal response
of the superfluid phase in the vicinity of the transition is
stronger than that of the normal phase—driven entirely by
the fact that spin-up quasiparticles are easy to excite and
have a large density of states.

The comparison in Fig. 3 provides compelling lower and
upper bounds for the superfluid gap. Even if the tempera-
ture was extracted incorrectly from the experiment, the
extracted gap cannot be too small. A gap smaller than
� 0:4EF would produce a shell of polarized superfluid
before the transition even at zero temperature. Further-
more, the radial dependence of this polarization would be
quite different than observed experimentally, rising
abruptly from the point, where � � �� and being concave
rather than convex. A gap larger than � 0:5EF would be
unable to produce the observed polarization in the super-
fluid phase. We have also examined the dependence of our
results on the universal parameters � and �. Both of these
are expected to be uncertain by 0.02. These uncertainties,
as well as the uncertainties in the superfluid quasiparticle

dispersion relation do not significantly alter the extracted
bounds on the superfluid gap.

In summary, we have extracted the pairing gap from
measurements of spin-up and spin-down densities in po-
larized Fermi gases in the unitary regime. These systems
have an extremely large gap of almost one-half the Fermi
energy—the value extracted in this work is clearly the
largest gap measured in any Fermi system. Future more
precise experiments extending over the BCS-BEC transi-
tion region would allow an experimental determination of
the evolution of the pairing gap from the weak-coupling
regime of traditional superfluids and superconductors to
the strongly interacting regime. This could resolve long-
standing issues regarding, for example, the pairing gap in
neutron matter and the cooling of neutron stars.
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FIG. 3 (color). Polarization versus radius, theory and experi-
ment, for different values of � and tc at T0 � 0:03 and T0 � 0:05.
The dashed curves show the local finite temperature gap. The
results indicate that the data provide both an upper and a lower
bound on the gap: 0:5 	 � 	 0:4.
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