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We present a first-principles study of the static dielectric properties of ice and liquid water. The
eigenmodes of the dielectric matrix � are analyzed in terms of maximally localized dielectric functions
similar, in their definition, to maximally localized Wannier orbitals obtained from Bloch eigenstates of the
electronic Hamiltonian. We show that the lowest eigenmodes of ��1 are localized in real space and can be
separated into groups related to the screening of lone pairs, intra-, and intermolecular bonds, respectively.
The local properties of the dielectric matrix can be conveniently exploited to build approximate dielectric
matrices for efficient, yet accurate calculations of quasiparticle energies.
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The physical and chemical properties of water are of
fundamental importance in numerous fields of science,
including planetary physics, chemistry, and biology [1].
Experimental techniques such as x-ray and neutron diffrac-
tion [2] have provided structural information on both ice
and liquid water, and their electronic and optical properties
have been probed by x-ray Raman and x-ray absorption
spectroscopy [3]. Nevertheless, many open questions re-
main on the ionic, electronic and bonding structure of
water, including the interpretation of recent spectroscopic
data [4]. From a theoretical point of view, ab initio calcu-
lations based on density functional theory (DFT) [5] have
been shown to qualitatively account for various structural
and dynamical properties of ice and water [6,7]. However,
excited state properties may not be evaluated satisfactorily
using the standard local density approximation (LDA) or
generalized gradient approximation (GGA) to DFT, point-
ing at the importance of exchange-correlation effects [8] in
the calculation of electronic and optical spectra, as dis-
cussed in two recent studies of ice [9] and water [10] based
on many-body perturbation theory (MBPT).

One key input in MBPT (and in time-dependent DFT
calculations) is the dielectric matrix ��r; r0;!�. In spite of
its central role in excited states calculations and hence, in
the interpretation of spectroscopic data, very little is known
about the screening properties of ice and water at the
microscopic scale.

In this Letter, we present a first-principles study of the
static dielectric properties of ice and liquid water, and
discuss locality properties of their respective dielectric
matrices, in particular, those of the lowest eigenmodes of
��1, which are essential to the concept of intra- and inter-
molecular screening. We also propose an approximate way
to represent the full dielectric matrix that enables efficient
calculations of quasiparticle energies within the GW ap-
proximation [11].

In this study liquid water was modeled by a periodic
system containing 16 H2O molecules in a cubic unit cell
with size of 14.80 a.u.. A recent investigation [10] with a

similar unit cell size yielded both quasiparticle band gap
and optical spectra in satisfactory agreement with experi-
ment. Atomic positions were obtained through classical
molecular dynamics simulations [12] with the TIP4P po-
tential [13]. The electronic wave functions were computed
within DFT-PBE [14] using a plane-wave basis set with a
kinetic energy cutoff of 60 Ry, and separable, norm-
conserving pseudopotentials [15,16]; the Brillouin zone
(BZ) was sampled with 64 k points (a 4� 4� 4
Monkhorst-Pack grid). Both band structure and density
of states (not shown) are found to be in good agreement
with previous DFT calculations with larger unit cells [17].
Calculations on hexagonal ice (ice Ih) were based on the
Bernal ice model [18], where the optimized cell parameters
are a � 14:53 a:u: and c � 13:67 a:u:. For ice we em-
ployed a kinetic energy cutoff of 85 Ry and 64 k points
for BZ sampling. Quasiparticle calculations were carried
out within the G0W0 approximation [11,19–21], where the
frequency dependence of the self-energy was approxi-
mated by a plasmon-pole model [22] based on dielectric
eigenmodes (DMs).

In the following, we first discuss the properties of the
static dielectric matrices of ice and water, as obtained
within the random phase approximation (RPA) [23]. In
particular we compare eigenvalues and eigenvectors of
these matrices with those obtained with a similar procedure
for the gas phase water monomer and dimer. Finally, by
exploiting localization properties found for the eigenvec-
tors of ��1, we propose a way of constructing approximate,
yet accurate dielectric matrices for electronic structure
calculations with MBPT.

The macroscopic dielectric constants can be extracted
from the inverse dielectric matrices ��1

GG0 �q� as �M �
1=��1

0;0 �0�. Our calculations yield �ice
M � 1:78 and �water

M �

1:72, in satisfactory agreement with the experimental value
of about 1.7 and 1.8 [24]. The dielectric band structures
(DBS’s) [25], shown in Figs. 1(a) and 1(b), overall exhibit
very little dispersion suggesting, in analogy with flat elec-
tronic band structures, a strong localization of the eigen-
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states of ��1 with respect to the unit cell size. We note that
the lowest eigenvalue at the � point in ice (water) is 0.28
(0.31), corresponding to a dielectric screening constant of
3.55 (3.21) much larger than �ice

M (�water
M ). From the lowest

part of the ice spectrum (��1
i < 0:75 in Fig. 1(a) with ��1

i
the ith eigenvalue of ��1), one can identify four groups of
eigenvalues, each containing a number of bands that is a
multiple of the number of molecules (nm) in the unit cell:
the four groups, in order of increasing eigenvalues, contain
nm, 2nm, nm and 2nm bands, respectively. Very similar
features were identified in the DBS of water except for
the mixing of eigenvalues belonging to group two and
three. Furthermore, group one and four in average have
larger eigenvalues in water than in ice, possibly due to a
higher level of structural disorder in the liquid phase.

The eigenfunctions of ��1 represent potentials which,
when applied to the system, yield a screened potential of
the same spatial form, but reduced by a factor given by the
inverse of the eigenvalue. In a periodic system, these
eigenfunctions are Bloch waves extending over the entire
unit cell in real space. In order to extract screening prop-
erties at the atomic scale, and relate them to specific bonds,
we explored the possibility of transforming extended ei-
genfunctions at the � point into localized states. To this
end, within the distinct groups of eigenvectors identified
above, we applied the same procedure proposed in
Ref. [26] that transforms extended Bloch states of the
Hamiltonian into maximally localized Wannier functions
[27], following a simultaneous diagonalization algorithm
[28]. We shall refer to this representation of dielectric
eigenmodes as maximally localized dielectric eigenmodes
(MLDMs). Those MLDMs obtained from the first three
groups can be associated to intramolecular screening. In
the first group, the majority of the MLDMs is centered
around the oxygen atom with a smaller intensity in prox-
imity of the hydrogen atoms, as shown in Fig. 1(c). The
MLDMs originating from modes of the second and third
groups are associated with intramolecular O-H bonds
[Fig. 1(d)] and oxygen lone pair p like functions
[Fig. 1(e)], respectively. The spatial extension of

MLDMs increases in going from group one to group three,
and the average spreads of MLDMs in ice are 1.04, 2.22,
and 2.75 a.u., respectively.

Dielectric bands in the fourth group have a intermolec-
ular character. In ice, MLDMs from group four represent
the screening within nearest neighbors (water pairs) as
shown in Fig. 1(f): the function has a significant amplitude
both along the O-H bond of the donor and on the oxygen
atom of the acceptor. The Wannier center is located in
proximity of the donor proton, and the weight of the
MLDM associated with the donor is larger than that on
the acceptor. This results in a relatively small average
spread of 2.19 a.u.. The corresponding mode in liquid
water is less localized in real space, with an average spread
of 2.69 a.u.. MLDMs beyond the fourth group in both
systems become strongly entangled and more delocalized,
and cannot be ascribed to specific intra- or intermolecular
bonds.

The nature of MLDMs of water in solid and liquid
phases can be elucidated by comparisons with the DMs
of an isolated water monomer and dimer [29], as obtained
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FIG. 2 (color online). The eigenvalues and first seven eigen-
functions of the inverse dielectric matrix of an isolated water
molecule.
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FIG. 1 (color online). The dielectric band structure of (a) liquid water and (b) ice Ih. The lowest bands in ice and water form
distinctive groups, whose representative maximally localized dielectric eigenmodes (see text) are shown in (c),(d),(e), and (f).
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by direct diagonalization of their RPA dielectric matrices.
As shown in Figs. 1 and 2, the intramolecular modes of
liquid water and ice can be traced back to those of an
isolated monomer; in particular, the modes associated
with the bulk O-H bond [two per molecule as shown in
Fig. 1(d)] are a linear combination of the second and third
DMs of the monomer. For the same type of modes, the
eigenvalues in the monomer are always larger than the
average of those of the bulk. Furthermore, there is no
eigenmode present in the monomer at 0:66< ��1

i < 0:75,
i.e., the range of eigenvalues corresponding to the pair
screening modes in the bulk. These modes can instead be
traced back to those found in a water dimer (not shown),
although the corresponding eigenvalue is higher (��1

i �
0:77) than in the bulk. This difference may be ascribed to
the different geometry of hydrogen bonds in the dimer and
the bulk, and to the presence of the local field created by
the dielectric environment present in the bulk tetrahedral
network. These findings indicate that a description of
liquid water as a collection of molecules with modified
polarizabilities, with respect to their gas phase values,
would not be appropriate, as it would not capture important
properties of the system dielectric response, which in-
cludes complex intermolecular screening.

In order to quantify the contribution of localized modes
to the overall dielectric screening, we plot (1� ��1

i ) in
Fig. 3. Clearly the curve decays very rapidly as the mode
index i increases. The intramolecular and nearest-neighbor
modes alone contribute nearly 50% of the screening as
shown in the inset. This suggests a way to reconstruct an
approximate dielectric matrix from a limited number of
DMs. We write ��1 as the sum of two terms,

 ��1 ’
Xn
i�1

jUii�
�1
i hUij �

XN
i�n�1

jVii�
�1
Ai hVij: (1)

The first term contains the lowest n exact DMs, and the
second term contains approximate forms of eigenvalues
��1
Ai and eigenvectors jVii for i > n, as described below.

Eigenvectors jUii and jVii are required to be orthogonal,
although this requirement is not sufficient to uniquely
determine jVii. Within a Fourier representation and
plane-wave basis sets, the initial guesses for jVii were
chosen as plane waves, and orthogonalization was en-
forced by a Gram-Schmidt procedure. We adopted the
Penn dielectric function [30] for ��1

Ai �q�,

 ��1
Ai �q� �

�
1�

�Ep
Eg

�
2
F
�

1�
p2
i �q�
�@kF�2

EF
Eg
F1=2

�
�2
�
�1
; (2)

where F � 1� 1
4 �Eg=EF� and p2

i �q� � hVi�q�jp
2jVi�q�i

with p the momentum operator; Ep, EF, and kF are plas-
mon energy, Fermi energy, and Fermi wave vector, respec-
tively. Once Eg is determined from ��1

1 �0�, there is no free
parameter in this model. To test the validity of our approxi-
mation in describing excited state properties, we computed
quasiparticle band gaps, the energy difference between the
highest occupied molecular orbital (HOMO) and the low-
est unoccupied molecular orbital (LUMO) at the � point,
by using the full and approximate dielectric matrices. With
the full dielectric matrix we obtained a quasiparticle band
gap of 8.7 eV for water, in agreement with other theoretical
(8.6 eV) [10] and experimental (8:7� 0:5 eV) [31] studies.
A simple truncation of the second term in Eq. (1) results in
a slow convergence of quasiparticle band gaps as shown in
Fig. 4. The band gap is overestimated when n, the number
of exact modes included in Eq. (1), is insufficient, due to an
underestimate of the screening. Compared to the truncation
scheme, the band gap obtained by using both terms in
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FIG. 3 (color online). Dielectric screening characterized by
(1� ��1

i ) in water (dashed line) and ice (solid line), as a
function of the dielectric eigenmode index. The normalized
cumulative sum in the inset shows that nearly 50% of the
screening arises from intramolecular and nearest-neighbor
screening modes (lying to left of the dotted lines).
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FIG. 4. Dependence of quasiparticle (GW) band gap of liquid
water on the number of exact dielectric eigenmodes (n) used in
Eq. (1). Dotted line: only the first term on the right hand side of
Eq. (1) is included (truncated ��1); dashed line: both terms are
included (approximate ��1). Inset: Convergence of quasiparticle
energies (HOMO and LUMO) and band gap of ice (solid line)
and water (dashed line) as a function of n when an approximate
dielectric matrix is used.
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Eq. (1) requires a much smaller n, e.g., 96 instead of about
600 in the case of water. By including up to the nearest-
neighbor screening modes, the band gap is already within
0.07 (0.16) eV of the results obtained from the full dielec-
tric matrix for water (ice). About the same number of
eigenmodes is required to converge the absolute value of
the HOMO and LUMO energies (see inset). We note that
the procedure proposed here can lead to substantial savings
in memory and computer time, when computing quasi-
particle spectra. Indeed, the lowest n DMs can be ob-
tained through iterative approaches [32,33], thus avoiding
the evaluation and diagonalization of the full dielectric
matrix, as well as the expensive direct summation over
the unoccupied states in the dielectric response function
calculation.

In conclusion, we presented a microscopic description of
the static, electronic dielectric response of liquid water and
ice from first-principles. We identified dielectric eigen-
modes that can be localized in real space, and that are
related to intra- and intermolecular screening within
nearest-neighbors. We also proposed an approximate yet
accurate way to construct the static dielectric matrix, that
may be exploited to efficiently obtain quasiparticle spectra.
Our approach opens the way to the study of excited state
properties of large water samples and possibly solvated
molecules using MBPT.
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