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We investigate weak localization in metallic networks etched in a two-dimensional electron gas be-
tween 25 and 750 mK when electron-electron (e-e) interaction is the dominant phase breaking mecha-
nism. We show that, at the highest temperatures, the contributions arising from trajectories that wind
around the rings and trajectories that do not are governed by two different length scales. This is achieved
by analyzing separately the envelope and the oscillating part of the magnetoconductance. For T * 0:3 K
we find Lenv

’ / T�1=3 for the envelope and Losc
’ / T�1=2 for the oscillations, in agreement with the pre-

diction for a single ring [T. Ludwig and A. D. Mirlin, Phys. Rev. B 69, 193306 (2004); C. Texier and G.
Montambaux, Phys. Rev. B 72, 115327 (2005); C. Texier, Phys. Rev. B76, 153312 (2007)]. This is the first
experimental confirmation of the geometry dependence of decoherence due to e-e interaction.
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In a conductor, quantum electronic interference is lim-
ited by phase breaking mechanisms and can only occur
below a characteristic scale L’, the phase coherence
length. Understanding L’ is a fundamental issue of meso-
scopic physics. For samples much longer than L’, regions
of typical size L’ behave independently, causing disorder
averaging so that only contributions of reversed interfering
electronic trajectories survive. This gives rise to a small
quantum correction to the average conductance, called the
weak localization (WL) correction, suppressed by a mag-
netic field. Thus the magnetoconductance (MC) is a power-
ful experimental tool to measure L’, determine its
temperature (T) dependence, and identify the scattering
mechanisms responsible for decoherence. For a quasi 1D
diffusive wire (of width W � L’), the situation is now
well understood theoretically [1] and experimentally [2]:
when dephasing is dominated by electron-electron (e-e)
interaction, L’ is well described by the Altshuler-Aronov-
Khmelnitsky (AAK) theory yielding L’ / T

�1=3. For a
ring threaded by a flux �, the WL oscillates as a function
of � with a period �0=2 due to interference between
trajectories enlacing the ring, where �0 � h=e is the flux
quantum. These are the Altshuler-Aronov-Spivak (AAS)
oscillations [3]. It was recently pointed out in [4,5] that
decoherence due to e-e interaction is geometry dependent:
AAS oscillations involve a length scale L’ different from
the one of the AAK result for the wire.

The difference can be qualitatively understood along the
following lines. The WL correction is related to the
Cooperon P �t� which sums the contributions of closed
interfering reversed trajectories Ct for a time t. e-e inter-
action can be described as a fluctuating electromagnetic
field which randomizes the phase ��Ct� accumulated along
Ct. Thus the WL correction to the conductivity can be

written as

 �� � �
2e2D
�

Z 1
0
dtP �t�hei��Ct�iV;Ct ; (1)

where the average h� � �iV;Ct is taken over the fluctuations of
the electric potential V and the closed diffusive trajectories
Ct. In order to get a qualitative picture, it is sufficient to
consider the fluctuations of the phase h�2iV;Ct related to the

fluctuations of V via dh�2iV
dt �

R
d�hV���V�0�iV . The power

spectrum of the potential is given by the Johnson-Nyquist
theorem,

R
t
0hV���V�0�iVd� � 2e2TRt, for the resistance

Rt � x�t�=�W�0� of a wire of length x�t�, the typical
distance explored by interfering trajectories for a time
scale t; �0 is the Drude conductivity and W the section
of the wires. Since the scaling of x�t� with t depends on the

diffusion and therefore on geometry, from dh�2iV;Ct
dt 	

e2T
W�0

x�t� we see that the decoherence depends on geomet-

rical properties. For an infinite wire, x�t� 	
������
Dt
p

, so that the
phase fluctuation varies as h�2iV;Ct 	 �t=�N�

3=2 [6], with
Nyquist time �N / T�2=3. This well-known result of AAK
yields L’ 	 LN �

����������
D�N
p

/ T�1=3 [1,7]. However, for a
finite wire or for a ring of perimeter L, the length x�t�
cannot be greater than L at large times, leading to fluctua-
tions h�2iV;Ct 	 t=�c with the new time scale �c / T�1,
yielding L’ 	 Lc �

���������
D�c
p

/ T�1=2 [4,5].
In a ring, the WL involves two kinds of trajectories:

those which do not enclose the ring whose dephasing is
expected to be driven by �N and those which enclose the
ring and necessarily explore the whole system so that their
dephasing is driven by �c. In the Fourier series of the
conductivity, the harmonic n � 0 (smooth part) corre-
sponds to trajectories which do not enlace the ring and
are only affected by the penetration of the magnetic field in
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the wires. Therefore we expect the T dependence of the
envelope to be characterized by Lenv

’ / T�1=3, as in an
infinite wire. On the other hand, for harmonics n � 0,
trajectories causing the AAS oscillations encircle the ring
at least once. As a consequence the harmonics decay for
L’ � L, defined as e�nL=L

osc
’ [8], is characterized by

Losc
’ / T�1=2 [9]. Thus the envelope and the oscillations

of the MC are controlled by two different length scales.
In this Letter, we show how these two length scales can

be extracted from the MC of networks fabricated from a
GaAs=AlGaAs 2D electron gas (2DEG). L’ is determined
independently from the harmonics content of the AAS
oscillations (Losc

’ ) and from the MC envelope (Lenv
’ ) be-

tween 25 and 750 mK. The main result is that Losc
’ follows

a T�1=3 law up to 300 mK and a T�1=2 law above, whereas
Lenv
’ follows a T�1=3 law up to 750 mK. This is the first

experimental evidence that in the high T regime, Lenv
’ =L &

0:3, the phase coherence length follows a different power
law with T for harmonics 0 and 1.

Measurements were performed on two different net-
works described in [10], and therein denoted sample A
(with electrostatic gate) and sample C (without). They
consist of 106 square loops of side a � 1 �m for sample
A (a 1000
 1000 grid connected at two opposite corners
through 100 wires) and a � 1:2 �m for sample C (a rect-
angular grid of aspect ratio 5 connected at the two narrow
sides). The nominal width of the wires is W0 � 0:5 �m.
We have measured the MC up to 4.5 T between 25 mK and
1.3 K, using a standard lock-in technique (current of 1 nA
at 30 Hz). The samples were strongly depleted at low T
because of the etching step used to define the network. The
intrinsic electron density of the 2DEG, ne � 4:4

1015 m�2 for sample A and 3:8
 1015 m�2 for C, is
recovered by illuminating the samples for several minutes
at 4.2 K. The density was determined from Shubnikov-
de Haas oscillations visible above 1 T. The carrier mobility
was estimated to be � � 2:2 m2 V�1 s�1, 10 times smaller
than the mobility of the original 2DEG.

A typical experimental curve is shown in Fig. 1. At low
magnetic field, the MC exhibits large AAS oscillations
with a period corresponding to�0=2 per unit cell (allowing
a precise determination of a). At 55 mK, three harmonics
are visible in the Fourier spectrum of the MC (inset of
Fig. 1). The oscillations are damped above 60 G, but the
field dependence of the envelope, due to the penetration of
the magnetic field through the wires, is still clearly visible.
At high T, the AAS oscillations gradually disappear even at
low field and only the positive MC remains with a smaller
amplitude. The first harmonic is detectable up to 750 mK
and the second up to 350 mK.

In [10] only the ratio between first and second harmonics
was exploited below 350 mK, whereas the present work
reports new data in a broader temperature range extending
into a regime where L’ � L � 4a. Difficulties arise due
to uncertainties in some sample parameters such as the real
width W of the wires or the elastic mean free path ‘e. This

is why we have developed the following strategy to extract
L’ as a function of T (and other parameters) with the least
possible parameters. At high T (*1 K) decoherence is
dominated by electron-phonon interaction and is well de-
scribed in Eq. (1) by a simple exponential hei��Ct�iV;Ct �
e�t=�’ independent on trajectories, where �’ � L2

’=D. In
this case the theoretical calculation for the WL correction
to the conductance of a square network [10,11] �G�
C� ~��L’;���C�� ~�env�L’��� ~�osc�L’;��� perfectly de-
scribes the experimental results [11–13]. � � Ba2 is the
flux per cell and � ~� � W�� (so that �G and � ~� do not
depend explicitly on W). � ~�env and � ~�osc designate the
smooth and oscillating (AAS) parts, respectively. C de-
pends on the network and its connection to contacts [from
classical combination of resistances in series and in paral-
lel we find that the classical Drude conductance is GD’
�0W
3:5a for geometry A; therefore CA ’ 1=�3:5a�; for geome-
try C we have CC ’ 1=�5a�]. At low T (&1 K), decoher-
ence is dominated by e-e interaction and depends on the
nature of trajectories. Therefore we analyze separately the
envelope and oscillating part of MC. The envelope calcu-
lated with exponential relaxation interpolates between
� ~�env ’ �

2e2

h L’ for L’ � a and � 2e2

h
a
� ln�L’=a� for

L’ � a and is not expected to depend much on the precise
modelization of decoherence. On the other hand it was
shown [10,13] that the experimental result is perfectly
fitted by the MC curve � ~�osc with exponential relaxation.
Therefore we analyze the experiment with

 �G � C0� ~�env�L
env
’ � � C1� ~�osc�L

osc
’ ;��: (2)

To compare our measurements with the theory (2) we need
5 parameters: Losc

’ , Lenv
’ , W, C0, and C1. To begin with, we

extract directly Losc
’ (without any other adjustable parame-

ter) below 400 mK using the ratio of the two first harmon-
ics of the MC [10]. Using this result we determine the
prefactorC1 and eventually extract Losc

’ from the amplitude
of the first harmonic up to 750 mK. Then we can determine

FIG. 1. Magnetoresistance of network C at 55 mK. Inset: Fast
Fourier transform of the MC after subtraction of the envelope.
The first peak corresponds to Aharonov-Bohm oscillations.
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the width of the wires from the adjustment of the damping
of the oscillating part. Finally we obtain Lenv

’ andC0 for the
whole range of T by fitting the MC envelope with only
these two parameters.

As explained in [10], we extract Losc
’ by comparing the

experimental MC harmonics [�Gn�T�] to the theoretical
harmonics � ~�n�L

osc
’ �. Experimental Fourier peaks are in-

tegrated to account for the penetration of the magnetic field
in the wires. At low T (&300 mK), when the second
harmonic �G2 is clearly visible, this allows a direct deter-
mination of Losc

’ since the harmonics ratio R12 �
� ~�1

� ~�2
�

�G1

�G2
depends only on Losc

’ =a. It yields Losc
’ �T� / T�0:34
0:02

(Fig. 2), in agreement with [10].
At higher temperature, �G2 is suppressed and the T

dependence of Losc
’ �T� can only be extracted from �G1.

This requires the knowledge of C1, given by �G1�Losc
’ � �

C1� ~�1�Losc
’ �. Below 300 mK, since Losc

’ �T� and �G1�T�
are determined, we plot �G1 as a function of Losc

’ =a and
superimpose experimental data with theoretical calculation
for � ~�1�L

osc
’ � between 25 and 300 mK (inset of Fig. 2).

This yields CA
1 ’ 1=�25a� and CC

1 ’ 1=�20a�. This plot
shows that C1 does not depend on L’ and consequently
on T, which validates our assumption. It is now possible to
compare directly the experimental value of �G1�T� with
the theoretical C1� ~�1�L

osc
’ � (inset of Fig. 2) for the whole

T range where oscillations are visible and reconstruct the
curve Losc

’ �T� up to 700 mK. The result (Fig. 2) clearly

shows that at high temperature Losc
’ �T� is no longer de-

scribed by the same power law. The fit of the high T data
gives Losc

’ / T�0:53
0:05, very close to the expected T�1=2

for an individual ring [4,5]. It is interesting that the cross-
over between the two different power laws occurs for
Losc
’ =a ’ 1:2, precisely when the second harmonic be-

comes unobservable. This is consistent with the fact that
the network result coincides with the single ring result only
when the probability for trajectories to wind around two
cells is negligible [9].

Finally, the penetration of the magnetic field in the wires
can be described with the substitution L’ ! Leff

’ ��� [14],
performed for both Lenv

’ and Losc
’ [15]:

 Leff
’ ��� � L’=

�������������������������������������������������
1�

1

3

�
2�

WeffL’
a2

�
�0

�
2

s
: (3)

Weff � W
��������
3W

9:5‘e

q
(for ‘e � W and specular reflections) is

the width renormalized by the phenomenon of flux cancel-
lation [16]. This penetration causes the damping of the
oscillations and the external MC envelope. First, we extract
Weff from the damping of the oscillations. Since at large �
Leff
’ is independent of L’, this determination ofWeff is very

reliable. For a given Losc
’ , we compute the conductivity

� ~�osc�Losc
’ ���; ��. Comparing this curve to experimental

data yieldsWeff � 80
 5 nm (Fig. 3). For consistency, we
have checked that Weff does not depend on T from 25 to
700 mK.

We then extract Lenv
’ from the MC envelope by a fitting

procedure. The theoretical expression of the envelope
[10,11] depends only on Weff , Lenv

’ , and C0. Knowing
Weff , only two parameters remain, making the fit reliable.
Fitting the experimental MC envelope at each T we get
CA

0 ’ 1=�7a�, CC
0 ’ 1=�14a�, and the curve Lenv

’ �T� plotted
in Fig. 4. The fact that C0 does not depend on T confirms
the reliability of our method. The curve Lenv

’ �T� yields a
power law Lenv

’ / T�0:34 for the whole T range.

FIG. 2 (color online). Losc
’ �T� for samples A (squares) and C

(circles). Solid symbols are obtained from the ratio of the two
first harmonics; open symbols are obtained with only the first
harmonic. The dashed line is a fit of the low T part giving a
T�0:34 law and the dash-dotted line is the high T fit yielding a
T�0:53 law. Inset: continuous line is the numerical calculation of
� ~�1=a as a function of L’=a. Also plotted: �G1=�C1a� for
experimental data (open squares for A and open circles for C).
Solid circles on the Y axis: experimental values of �G1=�C1a�
for sample C measured at high T when Losc

’ is unknown. As
shown on the graph Losc

’ can be deduced from the corresponding
abscissa on the theoretical curve.

FIG. 3 (color online). Reconstruction of the damping of the
oscillations after subtracting the envelope. Circles are experi-
mental data for sample C at 55 mK. Lines correspond to theory
for Weff � 0:07a (dotted), 0:08a (solid), and 0:09a (dashed).
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From Weff , C0, and the measurement of GD �

C0
e2

h kFW‘e ’ 1=�46 k�� we obtain ‘e ’ 310 nm and
W ’ 190 nm, which agrees with [10]. The fact that we
find CA

0 ’ 1=�7a� and CC
0 ’ 1=�14a�, instead of the ex-

pected CA ’ 1=�3:5a� and CC ’ 1=�5a�, shows that there
probably are a significant number of broken wires [10].
This may partly explain the decoupling of the envelope and
the oscillating part of the MC (C0 � C1). However, we
expect that the broken wires have little effect on the
determination of L’ since the nontrivial shape of the MC
is still very well described by the calculation of � ~�osc that
does not include this effect [17]. In the absence of a full
theory for networks including the effect of e-e interaction,
we based our analysis on the theoretical result (2) for
exponential relaxation of phase coherence instead of the
single ring result [4,5]. This emphasizes nonlocal proper-
ties of quantum transport. However, we have not taken into
account the fact that the pre-exponential factor of harmon-
ics is expected to be proportional to Lenv

’ and not Losc
’ [5].

This may also partly explain the difference between C0 and
C1.

We now discuss the quantitative agreement of Lenv;osc
’

with theories. AAK [1,7] give LAAK
’ �

���
2
p
�D

2m�W
�kBT

�1=3 ’

0:88aT�1=3, with T in Kelvin (Fig. 4); m� is the effective
mass. Lenv

’ and Losc
’ are related by Losc

’ =a � $�Lenv
’ =a�3=2

[4,5,8] with $ � 2
5
4=� ’ 0:75. We have obtained experi-

mentally Lenv
’ =a � 0:81T�1=3 and Losc

’ =a � 0:62T�1=2

giving $ ’ 0:85 close to theory.
In conclusion we have shown that decoherence due to

e-e interaction is geometry dependent. This has been re-
vealed by demonstrating that, in the high T regime
(Lenv

’ =a & 1:2), the envelope of the MC and its oscillating
part (AAS) are governed by different length scales Lenv

’ /

T�0:34
0:02 and Losc
’ / T�0:53
0:05. These T dependences

are close to the expected Lenv
’ / T�1=3 [1] and Losc

’ /

T�1=2 [4,5]. Prefactors found in experiment are also con-
sistent with theories. We emphasize that it has been pos-
sible to use the power law Losc

’ / T
�1=2, derived theo-

retically for a single ring, in the regime Lenv
’ =a� 1

when rings of the network can be considered as indepen-
dent. In the other regime Lenv

’ =a * 1:2, the observed
Losc
’ / T

�0:34 is still unexplained [9].
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