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Motivated by the surge in research activities on graphene, we investigate instabilities of electrons on the
honeycomb lattice, interacting by onsite and nearest-neighbor terms, using a renormalization group
scheme. Near half band filling, critical minimal interaction strengths are required for instabilities toward
antiferromagnetic or charge-density-wave order. Away from half-filling, f-wave triplet-pairing and d� id
singlet-pairing instabilities are found to emerge out of density-wave regimes.
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Recently it has become possible to fabricate graphene
[1]. Already its structure poses some interesting questions
to experiment and theory [2]. The massless-Dirac spectrum
near the two Fermi points of the undoped system gives rise
to novel quantum Hall effects and many more complex
physical puzzles [2]. Mesoscopic properties of graphene as
specular Andreev reflection [3], analogues to relativistic
quantum mechanics [4] or spin quantum bits with graphene
[5] are discussed intensively.

Obviously, the question arises if graphene features any
interesting many-body states. Until now, no drastic anoma-
lies have been reported [6]. Superconductivity in graphite
compounds is usually attributed to extrinsic causes, e.g., to
interlayer states for intercalated compounds [7] or, more
intriguing and less clear-cut, to disorder of sulfur atoms in
graphite-sulfur composites [8]. Intrinsic pairing in 2D
graphene would be a fascinating finding. In theory, the
electronic self-energy for undoped graphene is of marginal
Fermi liquid type [9]. Upon doping a normal Fermi liquid
develops [10]. The Dirac spectrum should further be re-
flected in the dependence of the phonon renormalization on
the electron density [11].

There have been various theoretical studies of ordered
states on the honeycomb lattice [12–18] driven by inter-
actions, but to date no comprehensive picture for a wider
range of interaction parameters and band fillings is avail-
able. Here we investigate intrinsic interaction effects on the
honeycomb lattice for a range of short-ranged interactions
and dopings, using the perturbative functional renormal-
ization group (FRG). This method works in the thermody-
namic limit and goes beyond the 1=N- or mean-field-
approximations of Refs. [13,15,17]. It is well suited to
treat competing orders as it includes the coupling of col-
lective fluctuations in an unbiased way. Recently it has
been applied to two-dimensional (2D) Hubbard models on
square [19–22] and triangular lattices [23,24].

Our model is a 2D honeycomb lattice with nearest-
neighbor hopping amplitude t. The interaction terms con-
tain onsite and nearest-neighbor repulsions U and V, and a
spin-spin interaction J. The restriction to short-range terms
is partly due to the difficulty to treat a long-range Coulomb
part directly in the FRG approach. However, most experi-

mental graphene systems are doped to some degree. Hence
at least the effective interaction is screened, and our start-
ing point may not be unrealistic. Furthermore, for the
undoped case, the long-range part was shown [15] to be
marginally irrelevant in 1=N; hence, our results for short-
range interactions may even be useful in the undoped case.
The Hamiltonian reads
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The FRG scheme used here is an approximation to an
exact flow equation for the one-particle irreducible vertex
functions of a many-fermion system when a parameter in
the quadratic part of the action is varied [25]. In the
temperature-flow scheme employed here, the temperature
T is used as flow parameter. The FRG flow is generated by
lowering T from an initial value T0 where the perturbative
corrections are negligible. In the approximation we use for
the flow [22], the derivative of the interaction vertex VT
with respect to T is given by the T derivative of one-loop
corrections. These one-loop diagrams are of second order
in the vertices VT and include particle-hole diagrams, e.g.,
vertex corrections and screening, and particle-particle dia-
grams. Higher loop contributions are generated by the
integration of the flow. Like in many previous works using
this method, the self-energy feedback on the flow of VT is
neglected. It may become important when the interactions
get large. Hence the flow is stopped when the interaction
strength exceeds twice the bandwidth. The method is con-
trolled in the limit of small interactions. For the interesting
case of moderate interactions, it should be viewed as a step
beyond the meanfield level that captures the evolution and
competition of various correlations in an unbiased way.

The interaction vertex can be expressed by a coupling
function VT�k1; k2; k3�. It depends on the generalized wave
vectors of two incoming particles (k1 and k2) and one
outgoing (k3) particle with wave vector, Matsubara fre-
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quency, and spin projection ki � � ~ki; !i; si�. In the search
for instabilities toward symmetry breaking, the frequency
dependence is neglected and the !i are set to zero. The ~k
dependence of remaining function VT� ~k1; ~k2; ~k3� is discre-
tized in the so-called N-patch scheme, introduced in this
context in Ref. [19]. For cases with a FS, this amounts to
keeping VT� ~k1; ~k2; ~k3� constant within patches labeled by
ki � 1; . . . ; N perpendicular to the FS. This defines an N3

component coupling function VT�k1; k2; k3�, which is com-
puted for ~k�ki� � ~ki, i � 1; . . . ; 3, on the FS. As for the
honeycomb lattice there is no FS at half band filling, we
generalize the patching scheme to two or three rings of 18
or 24 patches around the Dirac points (see Fig. 1). In
addition, VT�k1; k2; k3� depends on 4 band or sublattice
indices for the 2 incoming and 2 outgoing particles. For
brevity, these indices are not shown in our notation, but
mentioned if necessary.

The RG flow is started at an initial temperature T0. The
initial interaction is given by the bare interaction with the
onsite repulsion U and the nearest-neighbor interactions V
and J. Specifically, we search for flows to strong coupling,
where for a certain low temperature Tc one or several
components of VT�k1; k2; k3� become large. At this point
the approximations break down, and the flow has to be
stopped. Information on the low-T state is obtained by
analyzing which coupling functions grow most strongly
and from the flow of susceptibilities. In particular for 2D
systems, this instability does not guarantee true long-range
order. Rather, it should be interpreted as a breakdown of
the (semi-)metallic state and as indicator for the leading
correlations at low T.

Beginning with the semimetal for chemical potential
� � 0, we first find perturbative stability. Starting the
RG at high T and small U, V or J, we can follow the
flow down to lowest T without a divergence. This is differ-
ent from systems with a finite density of states at the Fermi
energy, where the flow practically always leads to some

kind of instability. In our case, the absence of a flow to
strong coupling indicates the absence of long-range order
due to electronic interactions even at lowest T.

Next we increase the bare interactions. Above a critical
value Uc � 3:8t for the onsite repulsion U with V � J �
0, the interactions flow to strong coupling. The static
antiferromagnetic (AF) spin susceptibility grows most
strongly toward the critical temperature scale, indicating
a tendency toward AF spin-density-wave (SDW) formation
with opposite orientation of the ordered spin moment on A
and B sublattices. For small U, J � 0, and increasing
nearest-neighbor repulsion V we again find a flow to strong
coupling for V > Vc � 1:2t, now with leading charge-
density-wave (CDW) correlations for different charge den-
sities on the two sublattices. This compares favorably with
a previous 1=N analysis [15] finding the same instabilities
beyond critical values Uc and Vc. There is also good
agreement with the early Quantum Monte Carlo work by
Sorella [12] who found a transition to an AF Mott-state at
U� 4t. In Fig. 1 we show the dependence of the critical
temperature Tc for the flow to strong coupling vs U and V.
The critical U of the SDW instability is more or less
unaffected by an increasing V, while Vc for the CDW
regime is shifts to larger V with a roughly linear depen-
dence onU. When the two lines meet, there is a continuous
change from leading SDW to leading CDW correlations
(or vice versa). This is consistent with a first order tran-
sition, if order is possible at all. The competition for the
spectral weight not included in this study as the self-energy
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FIG. 1 (color online). Left: Brillouin zone and 18� 3 points
used for discretizing the wave-vector dependent interaction. The
solid lines are at constant band energy. The lattice constant
(minimal distance between 2 A-sublattice sites) is set to 1.
Right: Critical temperature Tc for the flow to strong coupling
vs interaction parameters U, V at half-filling � � 0, J � 0. In
the region with Tc � 0, the semimetal is stable. For small U and
V > 1:2t, the flow is toward a CDW instability, for small V and
U > 3:8t toward a SDW instability.
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FIG. 2 (color online). Upper plots: Flow of susceptibilities,
solid line CDW, dotted line SDW, for (a) U � 4t, V � 0,
(b) U � 0, V � 1:5t. Lower plots: Interactions VT�k1; k2; k3�
very close to the SDW instability at Tc 	 0:05t for U � 4t, V �
0. The colorbar indicates the values of the couplings. The
incoming wave vectors k1 and k2 are on the inner rings near
the Dirac points, for k1=2 � 1 to 12 on sublattice A, and k1=2 �

13 to 24 for SL B. The 1st outgoing particle k3 is at point 1 and
SL A. In (c), the 2nd outgoing is on SL A, in (d) on SL B.
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is neglected could, however, reduce the ordered moments
in the transition region.

In Fig. 2 we display the flow of various susceptibilities
for SDW and CDW instabilities, and VT very close to Tc.
The actual calculation takes place in the fermionic basis
which diagonalizes the hopping term. The resulting inter-
actions are transformed back into the sublattice (SL) basis
with operators c�y�~k;s;l on SL l � A, B for incoming and

outgoing particles. In Figs. 2(c) and 2(d) we show the
real part of VT�k1; k2; k3� close to Tc of the SDW instability,
for the incoming wave vectors varying over 12 ~k-space
points labeled by k1 and k2 on the innermost rings around
the Dirac points in the left plot of Fig. 1. The 12 points are
numbered in a clockwise fashion around the Brillouin zone
hexagon. Points 1,2 are near ~K, points 3 and 4 near ~K0, and
so on. Points 1 to 12 refer to particles on SL A, points 13 to
24 are numbered in the same way for SL B. The first
outgoing wave vector is fixed at point k3 � 1 on SL A.
VT�k1; k2; k3� shows either vertical or horizontal features

with strongly attractive or repulsive values. The vertical
features have k2 � k3 (i.e., same wave vector, same SL for
particles 2 and 3) or k2 � k3 
 12 (same wave vector, but
different SLs for particles 2 and 3). From these features the
dominant instability can be read off, e.g., by comparing
VT�k1; k2; k3� to an infinite-range interaction which gives a
SDW as ground state. On a lattice with N sites, we can
define spin-spin interactions N�1P

~qJ
l;l0

~q
~Sl~q � ~S

l0
� ~q with ~Sl~q �

1
2

P
~k ~�ss0c

y
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c ~k;s0;l. For the infinite-range SDW interac-

tion, only the ~q � 0 components in J~q;l;l0 are nonzero. We
should have Jl;l~q�0 < 0, i.e., ferromagnetic (FM) on the

same SL, while Jl;l
0

~q�0 > 0, i.e., AF, for different SLs l �

l0. Comparing this with the effective interaction from the
FRG,
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~q =2. In the FRG data in Fig. 1(c) and 1(d), only the
~q � 0 interactions grow strongly, and the signs depending
on the SL follow exactly that of the reduced spin-spin-
interaction with FM intra-SL and AF inter-SL processes.
The CDW instability is read off from VT in similar way.

Next we turn to the doped system. Specifically we search
for density-wave driven Cooper pairing.� � 0 creates two
FSs around the Dirac points. The ~q � 0 nesting between
the two bands is reduced. This cuts off the CDW and SDW
instabilities at low T. The behavior of the CDW suscepti-
bility and Tc vs� is shown in Fig. 3(a) and 3(b). The SDW
instability for dominant U (or J) behaves analogously.
Beyond a critical doping, the CDW susceptibility remains
finite for T ! 0. If we continue the flow down to lower
temperatures T < 10�3t, we observe a strong growth in the
Cooper pairing processes with zero total incoming wave
vector. This is clearly visible in the effective interactions
near Tc shown in Fig. 3(c) for � � 0:75t. Here, processes
with zero total incoming wave vector (diagonal features)
are enhanced strongly. The pair scattering VT� ~k;� ~k!
~k0;� ~k0� is odd with respect to reversal of the outgoing
(or incoming) wave vectors, corresponding to triplet pair-
ing. From Fig. 3(c) it can inferred that the pair partners
� ~k;� ~k� are on the same SL. The pair scattering between
wave vectors near the same Dirac point is attractive, and
from one to the other Dirac point it is repulsive. As shown
in Fig. 3(d), the zero-total-momentum part of the effective
interaction follows closely the form �Vfdf� ~k�df� ~k

0
� with

the f-wave form factor df� ~k� � sin�kx� � 2 sin�kx=2��

cos�
���
3
p
ky=2�. The pairing has the same sign on the two

SLs. The corresponding meanfield picture gives a nodeless
state with gap amplitudes of opposite sign on the two Fermi
circles. In real space, the pairing with df� ~k� takes place
between a given site and its 6 next-nearest neighbors, with
sign change upon a �=3-rotation around the site. Thus the
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FIG. 3 (color online). (a) Flow of pairing susceptibilities in
f-wave (solid lines) and CDW channel (dashed lines) for chemi-
cal potentials � � 0:1t (thick lines) to � � 0:75t (thin lines).
(b) Tcs for the flow to strong coupling vs �. Crosses: U � 1:2t,
V � 2:4t with a CDW instability for �< 0:7t and a triplet
Cooper instability for �> 0:7t. Circles: U � 1:2t, J � 2:4t
with a SDW instability for �< 0:65t and a singlet d-wave
Cooper instability for � � 0:65t. (c) Interaction at low scales
for U � 1:2t, V � 2:4t, � � 0:75t, and outgoing wave vectors
fixed on SL A, k3 � 2 for a 18� 3 discretization. Points k1 and
k2 are on the middle of the three rings nearest to the FS and on
SL A for index 1 to 18 and on B for 19 to 36. The color bar
indicates the values of the couplings. (d) Crosses: Pair scattering
VT�k1; �k1; k2� for U � 1:2t, V � 2:4t, � � 0:75t with incoming
and outgoing particles on SL A and ~k1 � ~k� �k1� � 0 vs k2 around
the Brillouin zone hexagon. The dotted line is the ansatz
�Vfd

�
f�
~k1�df� ~k2�. Circles: Same data for the d-wave instability

at U � 1:2t, J � 2:4t, � � 0:75t. Here the dashed line is
�Vdd�x2�y2 � ~k1�dx2�y2 � ~k2� � d�xy� ~k1�dxy� ~k2��.

PRL 100, 146404 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
11 APRIL 2008

146404-3



pairing is not directly mediated by the nearest-neighbor
repulsion V, but due to a next-nearest-neighbor attraction
generated by higher orders of V in the FRG flow.
Consistently, if we introduce a next-nearest-neighbor at-
traction V2 < 0, the pairing instability is enhanced. Note
that this pairing is quite different from the nearest-neighbor
inter-SL pairing found in a mean field study in Ref. [16] for
attractive V. In full agreement with the interactions, the
flow of the f-wave susceptibility with form factor df� ~k�
[see Fig. 3(a)] shows a strong upturn once the CDW
susceptibility is cut off by sufficient doping. Other pairing
susceptibilities grow much more weakly.

Doping into the SDW regime for U >Uc does not
produce any measurable scale for a superconducting insta-
bility within our numerical precision. The SDW regime
just gives way to a stable Fermi liquid. The SDW regime
can also be generated in the FRG by a nearest-neighbor AF
Heisenberg interaction J > 2t. Doping into this state [see
Fig. 3(b)], the SDW scale drops down. Now, for J > 2t, we
find an instability in the singlet-pairing channel with
d-wave symmetry, confirming the results of a meanfield
decoupling of the J-term [17]. The energetically best state
is the complex linear combination of the two degenerate
basis function dxy and dx2�y2 , leading to a fully gapped
time-reversal-symmetry-breaking state [17]. In Fig. 3(d)
we show the effective pair scattering. It follows closely the
ansatz �Vdd�x2�y2� ~k�dx2�y2� ~k0� � d�xy� ~k�dxy� ~k

0
�� with the

form factors corresponding to the next-nearest-neighbor
pairing of dx2�y2 - and dxy-type, dx2�y2� ~k� � e�iky=

��
3
p

�

eiky=�2
��
3
p
� coskx=2 and dxy� ~k� � ieiky=�2

��
3
p
� sinkx=2.

Regarding possible realizations of Cooper pairing, we
note that a sizable Tc for the triplet-pairing requires domi-
nant nearest-neighbor repulsion V > U large enough to be
at least close to a CDW ordered state for zero doping. V >
U could be realized due to Holstein phonons, reducing the
effective U [26]. A CDW state (or an antiferromagnetic
insulator indicative of strong Heisenberg exchange Jwhich
could lead to robust d� id pairing), however, does not
seem to be realized in graphene. Yet, for graphene on a
substrate, there have been theoretical ideas [27] that out-of-
plane vibrations of the carbon atoms with opposite ampli-
tude on the two SLs could trigger a CDW instability, at
least in a magnetic field. If the system is near such an
instability, the phononic fluctuations would add to the
intrinsic fluctuations, and move the system closer to the
parameter range for triplet pairing. Recent photoemission
work [28] for graphene on SiC substrates revealed a gap-
like feature near the Dirac points, interpreted as AB-SL
symmetry-breaking by the substrate. If this gap is in fact a
cooperative effect of substrate and electronic interactions,
it would seem promising to dope the system out of gapped
phase and to search for superconducting correlations.

In conclusion, we have analyzed instabilities of interact-
ing electrons on the honeycomb lattice using a FRG
method. The undoped state becomes unstable with respect

to spin-density wave and charge-density-wave instabilities,
if onsite or nearest-neighbor repulsions exceed critical
values. Upon sufficient doping, the CDW instability gives
way to a triplet-pairing instability with intrasublattice
Cooper pairing of next-nearest neighbors. Doping of a
SDW regime with J > 0 leads to a singlet-pairing insta-
bility in the d-wave channel.
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