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Layering and Position-Dependent Diffusive Dynamics of Confined Fluids
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We study the diffusive dynamics of a hard-sphere fluid confined between parallel smooth hard walls.
The position-dependent diffusion coefficient normal to the walls is larger in regions of high local packing
density. High density regions also have the largest available volume, consistent with the fast local
diffusivity. Indeed, local and global diffusivities as a function of the Widom insertion probability
approximately collapse onto a master curve. Parallel and average normal diffusivities are strongly coupled
at high densities and deviate from bulk fluid behavior.
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Beginning with Einstein’s theory of Brownian motion, it
has been realized that diffusion provides an excellent
approximation to the motion of molecules in a bulk liquid
for times much longer than intervals between molecular
collisions. In molecularly confined systems, the situation is
more complicated. On one hand, particle structures emerge
that result in a spatially inhomogeneous density profile,
and on the other hand, the relaxation time of local density
fluctuations may become faster than the time required for
particle motions to become ‘‘diffusive.” Alternatively,
long-lived correlations can prevent the system from enter-
ing into a diffusive regime altogether, as in single-file
transport [1]. Nevertheless, in simulations of partially con-
fined systems such as fluids in two-dimensional (2d) slit
pores, diffusion is indeed observed parallel to the infinite
confining planes [2,3]. However, the situation is less clear
for motions in the perpendicular direction. Even if diffu-
sion were a useful description of the single-particle mo-
tions, one would expect the diffusion coefficient to be
spatially inhomogeneous. That, combined with the spa-
tially varying density profile and the confining boundaries,
essentially eliminates the usual way of estimating diffusion
coefficients from the mean-square displacement as a func-
tion of time [4]. As a consequence, diffusion in highly
confined environments has largely remained unexplored,
despite its relevance for micro- and nanofluidic devices [5].

We use a recently proposed propagator-based formalism
to estimate the position-dependent diffusion coefficients
self-consistently from simulation trajectory data [6]. For
diffusion, the propagator (or Green’s function)
G(z, At|Z/, 0) for single-particle displacements along the
coordinate z normal to the confining walls is assumed to
satisfy the Smoluchowski diffusion equation,
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absolute temperature. Spatial discretization of Eq. (1) [7]
results in a master equation that describes the single-
particle dynamics between neighboring intervals along z.
The particle trajectories in the simulations are discretized
by assigning positions into bins i along z. We count the
numbers N; that a particle is found in bin i at time 7, and in
bin j at time 7 + ¢, irrespective of its location at interven-
ing times, with ¢ the observation (or lag) time and N;
summed over 7. In essence, we then “fit” the diffusion
model Eq. (1) to the Nj; matrix (which we symmetrize to
enforce microscopic time reversibility/detailed balance).
This fit is done by determining the likelihood function L
for observing N;;. Assuming Eq. (1) for given D (z;) and
F(z;), L can be written as a product of Green’s functions
that are expressed in terms of a matrix exponential [6,7].
Here, we use a Bayesian approach with a Jeffreys’ prior to
infer the D | (z;) and F(z;) that are most consistent with the
observed N;; [6]. Alternatively, we could have maximized
the likelihood L. The resulting diffusive model can be
validated by comparing its predictions for N;; or
G(z, ¥'|Z, 0) to the simulation data for times t' # t.
Here, we apply this formalism to test whether diffusion
provides a quantitative description of the single-particle
dynamics perpendicular to the confining planes for a fluid
confined in a 2D slit pore. We also explore whether em-
pirical relations between the fluid density and the diffusion
coefficient identified for diffusion in bulk and parallel to
the walls [3] transfer trivially to perpendicular diffusion.
Hard spheres (HS) confined between hard walls are
arguably the most basic model of confinement. Never-
theless, the essential physics of inhomogeneous fluids is
captured, such as pronounced local density variations [8]
or shifted fluid-solid phase boundaries with respect to bulk
[9]. Also, the unambiguous definition of quantities like
accessible volume, and rigorous ways to calculate it for
hard-sphere fluids [10], can be helpful in elucidating the
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underlying microscopic mechanisms. Moreover, colloidal
systems could be used to test the predictions experimen-
tally [11,12], assuming that at sufficiently high particle
densities and at sufficiently long times (compared to the
characteristic time 7,.) the differences between our hard-
sphere Hamiltonian dynamics and the Brownian dynamics
of colloidal particles can be ignored.

We use discontinuous molecular dynamics (DMD)
simulations to generate dynamic trajectories for our model
system. In DMD, each particle follows a linear trajectory
until it collides with another particle or a wall. In a colli-
sion, the velocities of colliding particles are changed to
conserve energy and momentum [13]. To simplify the
notation, dimensionless quantities will be reported, ob-
tained by appropriate combinations of a characteristic
length (HS particle diameter o) and time scale (o/mp3,
where m is the particle mass). The packing fraction ¢ =
7p /6 is defined in terms of the density p based on the total
(rather than center-accessible) volume [3]. The DMD
simulations each involved N = 3000 identical HS parti-
cles. Periodic boundary conditions were applied in all
directions for the bulk fluid and in the x and y directions
for the confined fluid. In the confined system, perfectly
reflecting, smooth hard walls were placed at z = *H/2.
The transverse self-diffusivity D) was obtained by fitting
the long-time (#>> 1) behavior of the average mean-
squared displacement of all the particles to the Einstein
relation (Ar?) = 4Dyt, where Ar? corresponds to the
mean-square displacement per particle in the x and y
directions.

For calculating D | (z), we use a bin size of 1/10 to
divide the space in the z direction. To test the validity of
the diffusion model, Eq. (1), we calculate the position-
dependent diffusivities as a function of the observation
time ¢. From exponential fits of D, with respect to ¢ at
fixed z = 0, we find characteristic times 7, <1 for ¢ >
0.1, H= 3 and H = 5 (not shown). We observe an in-
crease in 7. with decreasing ¢, as expected from the
decreasing collision frequency. In the following, we report
diffusion coefficients calculated for 7= 1, somewhat
underestimating the long-time diffusivity at the lowest
densities, ¢ = 0.1.

To test if diffusion captures the dynamics normal to the
walls, we compare the long-time propagators G(z, t|7, 0)
of the Markovian model to the simulation data.
G(zj, tlz;, 0) = N;;/> Ny; is the conditional probability
in the simulations that a particle starting from bin i at
time O is found in bin j at a later time #. As shown in
Fig. 1 for two different packing fractions and for a pore size
H = 3, excellent agreement is found between the diffusive
model and the DMD data over 6 orders of magnitude in
probability.

Figure 2 compares D | (z) and the local density p(z) to
explore the effect of wall confinement on the local normal
diffusivity. Remarkably, we find that D | (z) is large where
p(z) is high (except near the walls, where p(z) drops
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FIG. 1 (color online). The conditional probability G(z, t|z’, 0)
of observing a particle at a position z at time 7 if it started at z’ at
t = 0. Results are shown for pore size H = 3, packing fractions
¢ = 0.05 (left) and 0.35 (right), and times ¢ = 1, 2, and 10
(bottom to top). The observation time ¢ = 1 is used to obtain
parameters of the diffusion model Eq. (1) (lines). Simulation
results for G(z, t|7/, 0) for different z/ are shown as symbols,
where 7’ varies from —0.05 to —0.95 (symbol o to *) in intervals
of 0.1. (For reference, mean collision frequencies for the bulk
hard-sphere fluid are approximately 852 and 7369 for ¢ = 0.05
and 0.35, respectively.)

sharply). This low diffusivity near the walls is due to the
presence of impenetrable reflective wall boundaries, limit-
ing diffusion to one direction. Figure 2 also shows the
predictions for D | (z) from hydrodynamic theory in the
Oseen approximation, D (z) = Dy /[f1(z + H/2) +
f1(H/2 — z) — 1], where f(h) is the correction factor
to the Stokes friction for a spherical particle moving per-
pendicular to a planar free surface [14] and the bulk
diffusivity Dy is calculated at the average pore density
p. A similar theory successfully described the in-plane
motion of a colloidal particle between two walls [15].
Here, we find that at packing fractions ¢ > 0.15 the hydro-
dynamic theory is remarkably accurate, quantitatively re-
producing the plateau of D, (z) near the center and
qualitatively the drop at the walls. However, as expected,
the D (z) from hydrodynamics is not structured, lacking
information about the molecular correlations and layering
of the fluid.

At first sight, the positive correlation between high local
density and faster local diffusion may appear counterintui-
tive as diffusivity for bulk fluids usually decreases with
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FIG. 2 (color online). Local normal diffusivity D;(z) and
density profile p(z) versus position in the z direction for a
pore size H =5 and packing fractions ¢ = 0.05, 0.10, 0.15,
0.20, 0.25, 0.30, 0.35, and 0.40 (top to bottom for D (z) and
bottom to top for p(z)). The predictions for D (z) from hydro-
dynamic theory (see text) are also shown as dashed lines for ¢ =
0.10, 0.20, 0.30, and 0.40. The local free energy F(z) (not shown)
constructed from the propagators is consistent with the equilib-
rium density profile, F(z) = —kzTInp(z) up to an arbitrary
constant.

increasing density. To understand this unexpected behavior
for inhomogeneous fluids, we turn our attention to the
physics of layer formation in the confined environments.
The confined fluid is structured normal to the walls and
forms layers to maximize its entropy [16]. Similarly, the
homogeneous hard-sphere fluid crystallizes at high enough
densities to maximize entropy [17,18]. We note that the
activity &€ = exp(Bu)/A3 of an equilibrated confined sys-
tem is spatially invariant, even though the density is not
(where w is the chemical potential and A is the thermal
wavelength). Also, for a hard-sphere fluid, £ = p(z)/Py(z)
[10], which means that the local insertion probability Py(z)
(or local available volume [19]) is directly proportional to
the density p(z). In other words, the idea that dense
“layers” actually have more available space than the
gaps between them is a consequence of this simple and
exact relationship derived more than 40 years ago by
Widom [10]. If we think of diffusion as particles probing
their surroundings for space, then P, should indeed be a
relevant quantity. A “prediction” would then be that D | (z)
should approximately collapse as a function of Py(z).

To test this prediction, we either need the particle in-
sertion probability Py as a function of z or the activity £ as
a function of pore size H and average pore density along
with the density profile p(z). Using the particle insertion
method can be very time consuming and even practically
limited at high densities. Instead, we use grand canonical
transition matrix Monte Carlo (GC-TMMC) simulations to

evaluate the functional relationship between the activity &
and the average pore density p for a given H. The details of
the GC-TMMC method are documented in [20] and the
specific implementation details are as in [21].

In Fig. 3, we show D, versus P, over a wide density
range (¢ = 0.05-0.4) for two pore sizes (H = 3 and 5).
The relationship for the bulk hard-sphere fluid and for the
transverse diffusivity are also shown on the same plot. We
find that the D | data (closed and empty symbols) approxi-
mately collapse to a power law form which in turn is very
similar to the bulk relationship shown by the solid line.
Note that right next to the wall, this relation does not hold
(marked by the shaded area in Fig. 3). However, this is
expected because at the wall particles can only diffuse in
one direction (i.e., away from the wall). Overall, the ap-
proximate collapse in Fig. 3 supports the idea that the local
available volume, probed by the insertion probability, is
indeed a relevant quantity for diffusion.

We also notice in Fig. 3 that the local normal diffusivity
is lower than the corresponding bulk value, when com-
pared at the same value of P,. This is expected because the
presence of the walls directly hinders normal diffusivity in
ways that are not reflected by the local available space. Of
course, this becomes a relatively small effect at high p and
is reflected in Fig. 3 by a convergence of the D, D, and
bulk diffusivity at low Py. The reason for the slightly
higher D stems from a higher chemical potential required
to achieve the average pore density equal to the bulk and
has been discussed in detail elsewhere [21].
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FIG. 3 (color online). Local normal diffusivity D | (z) at differ-
ent packing fractions ¢ as a function of the local available
volume, measured by the local insertion probability Py(z).
Filled and empty symbols correspond to H = 5 and 3, respec-
tively. Data for bulk are shown by a solid line. The dashed line is
a power law fit to the D | data. The average transverse diffusivity
D) is also shown for reference.
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FIG. 4 (color online). The average normal (blue circles) and
transverse (red diamonds) diffusivity versus the pore size H is
shown for a packing fraction of ¢ = 0.40. The corresponding
bulk diffusivity is shown as a solid horizontal line.

We can also use our formalism to explore the coupling
between diffusion in the transverse and normal directions.
In an earlier study [21], it was observed that D) of the
confined HS fluid shows pronounced negative deviations
from bulk fluid behavior for relatively high density (e.g.,
¢ = 0.4) and small pore widths (H < 3). These deviations
have an oscillatory dependence on H with slower diffusion
occurring for pore sizes that do not naturally accommodate
an integer number of particle layers in the density profile.
Based on such information, it was hypothesized [21] that
one might also expect a coupling between single-particle
dynamics in directions parallel and normal to the confining
walls. Here, we test this idea by calculating the average
normal diffusivity (D) = 61/2 D, pdz/ [(1)1/2 pdz and
comparing it to D in Fig. 4. The slightly higher diffusivity
in plane than perpendicular reflects the anisotropic, layered
molecular structure.

As shown in Fig. 4, the H-dependent oscillations of
(D) closely track those of D). Remarkably, the oscilla-
tions in D and (D ) as a function of H follow the pore-
width dependence of the phase boundary ¢ ((H) between
the confined solid and fluid HS system [9], and also the
excess entropy per particle [21]. These correlations illus-
trate the connection between dynamic and thermodynamic
properties arising from packing frustration. In particular,
these results provide strong support for the picture that
confinement-induced frustration affects diffusive particle
motions in both principal directions.
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