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We investigate chimera states in a ring of identical phase oscillators coupled in a time-delayed and
spatially nonlocal fashion. We find novel clustered chimera states that have spatially distributed phase
coherence separated by incoherence with adjacent coherent regions in antiphase. The existence of such
time-delay induced phase clustering is further supported through solutions of a generalized functional
self-consistency equation of the mean field. Our results highlight an additional mechanism for cluster
formation that may find wider practical applications.
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The study of time-delay induced modifications in the
collective behavior of systems of coupled nonlinear oscil-
lators is a topic of much current interest both for its
fundamental significance from a dynamical systems point
of view and for its practical relevance to modeling of
various physical, biological, and chemical systems. In
real life situations time delay is usually associated with
finite propagation velocities of information signals, latency
times of neuronal excitations, finite reaction times of
chemicals, etc., and in collective oscillator studies it is
usually modeled through a time-delayed coupling function.
Many such past model studies on globally and locally
coupled oscillator systems have uncovered interesting
and sometimes novel time-delay induced modifications
of the equilibrium, stability, and bifurcation properties of
their collective states [1]. While global and local (nearest
neighbor) coupling models have traditionally received
much attention, there is now a growing interest in the
collective dynamics of models with nonlocal couplings
[2–7]. Nonlocal coupling can be relevant to a variety of
applications such as in the modeling of Josephson junction
arrays [8], chemical oscillators [5,6,9], neural networks for
producing snail shell patterns, and ocular dominance
stripes [10–12]. One of the striking features of nonlocally
coupled oscillator systems is that they can support an
unusual collective state in which the oscillators separate
into two groups—one that is synchronized and phase
locked and the other desynchronized and incoherent [5].
Such a state of coexistence of coherence and incoherence
does not occur in either globally or locally coupled systems
and has been named as a chimera state by Abrams and
Strogatz [13]. The nature and properties of this exotic
collective state as well as its potential applications are still
not fully explored or understood and therefore continue to
offer exciting future possibilities. It is not known, for
example, whether such chimera states can exist in the
presence of time delay in the system, and if so then what
their characteristics are. This is the principal question we

examine in this work through numerical simulations and
mathematical analysis of a model system consisting of a
ring of densely and uniformly distributed identical phase
oscillators that are coupled in a time-delayed and spatially
nonlocal fashion. We find that chimera states do indeed
exist but acquire an additional spatial modulation such that
the single spatially connected phase coherent region of the
usual chimera state is now replaced by a number of spa-
tially disconnected regions of coherence with intervening
regions of incoherence. Furthermore, the adjacent coherent
regions of this clustered chimera state are found to be in
antiphase relation with respect to each other. To understand
the origin and the nature of this pattern, we have extended
the mean field approach used by Kuramoto [5] and applied
it to our system, which has a distance-dependent time-
delay factor in the coupling, and have derived a functional
self-consistency equation. A numerical solution of this
self-consistency equation yields a space-dependent order
parameter and a space-dependent mean phase function that
confirm the existence and explain the nature of the spatial
pattern of the oscillator phases.

We consider the following model equation representing
the continuum limit of a chain of identical phase oscillators
arranged on a circular ring C,
 

@
@t
��x; t� � !�

Z L

�L
G�x� x0�

� sin���x; t� ���x0; t� �x;x0 � � ��dx
0; (1)

where 2L is the system length, ! is the natural frequency
of the oscillator, and a closed chain configuration is en-
sured by imposing periodic boundary conditions. The ker-
nel G�x� x0�, appropriately normalized to unity over the
system length, is taken as

 G�x� x0� �
k

2�1� e�kL�
e�kdx;x0 ; (2)

which provides a nonlocal coupling among the oscillators
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over a finite spatial range of the order of k�1, which is
taken to be less than the system size. The coupling is time
delayed through the argument of the sinusoidal interaction
function, namely, the phase difference between two oscil-
lators located at x, and x0 is calculated by taking into
account the temporal delay for the interaction signal to
travel the intervening geodesic (i.e., shortest) distance
determined as dx;x0 � minfjx� x0j; 2L� jx� x0jg. The
time-delay term is therefore taken to be of the form �x;x0 �
dx;x0=v where v is the signal propagation speed. In the
absence of time delay, the above equation reduces to the
one investigated in [5,6]. The constant phase shift term� in
the undelayed model breaks the odd symmetry of the
sinusoidal coupling function and, as discussed in [13,14],
it is needed as a tuning parameter for obtaining chimera
solutions in the undelayed case. In the presence of time
delay, however, we find that � no longer plays such a
critical role since the time-delay factor also fulfills a simi-
lar function.

We now describe direct numerical simulation results
obtained by solving Eq. (1) using a large number of dis-
crete oscillators (typically N � 256). The set of system
parameters chosen for the simulations illustrated here
were 2L � 1:0, � � 0:9, k�1 � 0:25, ! � 1:1, and v �
0:097 656 25, corresponding to a maximum delay time
(�max) in the system of 5.12. As discussed in past studies
[5,6], the choice of appropriate initial conditions is very
important for numerically accessing a chimera state.
Kuramoto used a random distribution with a Gaussian
envelope for the initial distribution of the phases to obtain
a chimera solution. For our time-delayed system we find
that choosing the initial phases of the oscillators from a
uniform random distribution between 0 and 2� and then
arranging them in a mirror symmetric distribution in space
provides a rapid access to a clustered chimera state. Our
simulations have been done with the XPPAUT [15] package
using a Runge-Kutta solver (with a small integration time
step of �t � 0:01) till a time stationary solution is obtained
and tested for independence from discreteness effects by
repeating the runs for N � 128, 256, and 512. In Figs. 1(a)
and 1(b) we show a space-time plot of our simulation for
the parameters mentioned above in the early stages of
evolution (starting from random initial phases) and in the
final stages of the formation of a clustered chimera state,
respectively. Figure 1(c) shows a snapshot of the spatial
distribution of the phases in the final stationary state. We
see four coherent regions interspersed by incoherence and
also note that the adjacent coherent regions are in anti-
phase. Figure 1(d) is a blowup of the region between x �
�0:5 to x � �0:25 giving an enlarged view of an inco-
herent region and portions of the adjacent coherent regions.
These solutions are also found to be quite robust and show
no signs of instability over arbitrarily large integration
times. We have tested the integrity of the solutions for
times well over 100�max. A detailed parametric study of

the stability regions is presently under progress and will be
reported elsewhere.

To gain a better understanding of the nature of this
pattern and of the dynamics of its formation, we have
carried out a mathematical analysis based on the general-
ized mean field concept as developed by Kuramoto for the
nondelayed case. For this we first rewrite Eq. (1) in terms
of a relative phase ��x; t� � ��x; t� ��t (where � repre-
sents a rotating frame in which the dynamics simplifies as
much as possible such that the phase-locked portions rotate
with this constant drift frequency) as
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� sin���x; t�� ��x0; t� �x;x0 � �����x;x0 �dx
0:

(3)

The key idea behind Kuramoto’s analysis of chimera states
was the introduction of a mean-field-like quantity, namely,
a complex order parameter Rei�, defined in a manner
analogous to what is done for globally coupled systems.
For our case we write

 R�x; t�ei��x;t� �
Z L

�L
G�x� x0�ei���x

0;t��x;x0 ����x;x0 �dx0: (4)

The above order parameter differs from the usual definition
for global coupling systems in several ways—the spatial
average of ei� is weighted by the coupling kernel G�x�
x0�, the phase � is evaluated in a time-delayed fashion, and
the factor e�i��x;x0 adds a complex phase to the kernel
G�x� x0�. The latter two features provide a further gen-
eralization of Kuramoto’s analysis carried out for a non-
delayed system [5,6,13,14].
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FIG. 1 (color online). (a) The space-time plot of the oscillator
phases � for the parameters 2L � 1:0, k � 4:0, 1=v � 10:24,
! � 1:1, and � � 0:9 in the early stages of evolution from a
random set of initial phases. (b) A later time evolution. (c) A
snapshot of the final stationary state. (d) A blowup of the region
between x � �0:5 to x � �0:25, giving an enlarged view of an
incoherent region and portions of the adjacent coherent regions.
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In terms of R and �, Eq. (1) can be rewritten as

 

@
@t
��x; t� � �� R�x; t� sin���x; t� ���x; t� � ��; (5)

where � � !��. Equation (5) is in the form of a single
phase oscillator equation being driven by a force term,
which in this case is the mean field force. To obtain a
stationary pattern (in a statistical sense), we require R
and � to depend only on space and be independent of
time. Under such a circumstance the oscillator population
can be divided into two classes: those that are located such
that R�x�> j�j can approach a fixed point solution
[@��x; t�=@t � 0] and the other oscillators that have R�x�<
j�j and would not be able to attain such an equilibrium
solution. The oscillators approaching a fixed point in the
rotating frame would have phase coherent oscillations at
frequency � in the original frame, whereas the other set of
oscillators would drift around the phase circle and form the
incoherent part. Following the prescription provided by
Kuramoto [5,6] for the undelayed case, we substitute the
solutions of Eq. (5) for the two classes of oscillators into
the integrand on the right hand side (RHS) of Eq. (4) and
obtain the following functional self-consistency condition,
 

R�x�ei��x� � ei�
Z L

�L
G�x� x0�ei���x

0����x;x0 �

�
��

�������������������������
�2 � R2�x0�

p
R�x0�

dx0; (6)

where � � �=2� �. We need to solve for three un-
knowns—the functions R�x�, ��x�, and the quantity �.
Condition (6) provides only two equations when we sepa-
rate its real and imaginary parts. A third condition can be
obtained by exploiting the fact that the equation is invariant
under any rigid rotation ��x� ! ��x� ��0. We can there-
fore specify the value of ��x� at any arbitrary chosen point,
e.g., ��L� � 0. We have solved Eq. (6) numerically by
following a three step iterative procedure consisting of the
following steps. We choose arbitrary but well behaved
initial guess functions for R�x� and ��x� and use the
condition ��L� � 0 in one of the equations of (6) to obtain
a value for �. The initial profiles and the � value so
obtained are used to evaluate the RHS of (6) to generate
new profiles for R and �. These are next used to generate a
new value of �, and the procedure is repeated until a
convergence in the value of � and the functions R and �
are obtained.

A MATHEMATICA program incorporating this algorithm
was developed and benchmarked against the results for the
no-delay case. Figure 2 shows the rapid and excellent
convergence in � to a unique value of � � 0:189 for the
solution of Eq. (6) with system parameters chosen identical
to the ones that were used to obtain a clustered chimera
state by a direct solution of Eq. (1). The converged spatial
profiles of the order parameter (R and �) are shown in

Fig. 3, and the converged value of � is marked in the upper
panel by the horizontal line. The amplitude of the order
parameter (R) shows a periodic spatial modulation—peak-
ing at four symmetrically placed spatial locations. The
corresponding phases of the order parameter are seen to
be in antiphase for adjacent peaks in R. In between the
peaks R is seen to dip to very small values at certain
locations such that R�x�< j�j, which should correspond
to the incoherent drifting parts of the chimera. To better
appreciate the agreement between the direct solutions of
Eq. (1) and the mean field solutions of Eq. (6), we have
plotted the results together in Fig. 4. As is clearly seen, the
measured order parameter (R and �) and � from the direct
simulations of Eq. (1) match well with the results of
solving Eq. (6). The spatial profile of the phases (�) of
the oscillators as obtained from the direct simulation of
Eq. (1) is shown in the top panel of Fig. 4. We see four
coherent regions interspersed by incoherence as expected
from the results of solving Eq. (6). We note from Figs. 3
and 4 that both R and � are mirror symmetric [i.e., R�x� �
R��x�;��x� � ���x�], a property that the original phase
Eq. (1) also possesses. Equation (1) is also invariant under
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FIG. 2. Variation of � with the iteration number showing a
rapid convergence in the numerical solution of the self-
consistency Eq. (6). The system parameters are identical to those
used in the direct solution of Eq. (1).
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FIG. 3. Spatial profiles of the amplitude R and the phase � of
the order parameter obtained by solving the self-consistency
Eq. (6) by an iterative scheme. The horizontal line in the upper
panel marks the converged value � � 0:189.
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the transformation [��x; t� ! ���x; t�, !! �!, �!
��] and can have solutions with such a symmetry as
well, namely, traveling wave solutions given by ��x; t� �
�t� �qx=L. In our numerical simulations we find that by
changing the initial conditions, but keeping the same sys-
tem parameters, we can also get traveling wave solutions.
There also seems to be a clear correspondence between the
number of clusters of the observed chimera state and the
wave number q of the coexistent traveling wave solution.
For the 4-cluster chimera of Fig. 3 the coexistent traveling
wave has q � 2, and similar results have been obtained for
6-cluster (q � 3) and 8-cluster (q � 4) chimera solutions.

To conclude, we have demonstrated for the first time the
existence of chimera-type solutions in a time-delayed sys-
tem of nonlocally coupled identical phase oscillators. Time
delay is found to lead to novel clustered states with a
number of spatially disconnected regions of coherence
with intervening regions of incoherence. The adjacent
coherent regions of this clustered chimera state are found
to be in an antiphase relation with respect to each other.
Our numerical simulations are further validated and ex-
plained through solutions of a generalized functional self-
consistency equation of the mean field. The mean field
parameters (the amplitude and phase of the complex order
parameter) clearly reflect the modulated nature of the
effective driving force on each oscillator and lead to the
resultant pattern of phase distribution seen in the clustered
chimera state. Thus, time delay offers an additional mecha-
nism for cluster formations in dynamical systems, and
model systems incorporating time delay may provide a
useful paradigm for studying this phenomenon. Our results

can be usefully extended to higher dimensions, e.g., to
examine the influence of time delay on spiral wave based
chimeras in two dimensions [9], and may also help provide
insights into experimental observations of clustered states
that are generic to many chemical and biological systems
[16].
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FIG. 4 (color online). (a) The phase pattern for a clustered
chimera state as obtained by direct simulation of Eq. (1). The
measured spatial profiles of the order parameter (R and �) from
these simulations are shown in (b) and (c) as dashed curves and
compared with the solutions from the self-consistency Eq. (6)
shown as solid curves. (d) !� _� for the oscillators from a direct
simulation of Eq. (1). The horizontal lines in (b) and (d) mark the
converged value of � � 0:189.
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