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We present the first results for the Kl3 form factor from simulations with 2� 1 flavors of dynamical
domain wall quarks. Combining our result, namely, f��0� � 0:964�5� with the latest experimental results
for Kl3 decays leads to jVusj � 0:2249�14�, reducing the uncertaintity in this important parameter. For the
O�p6� term in the chiral expansion we obtain �f � �0:013�5�.
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The increasing precision with which the unitarity of the
CKM matrix [1] can be tested is an important tool for
exploring the limits of the standard model. One such
unitarity relation is

 jVudj2 � jVusj2 � jVubj2 � 1; (1)

whose uncertainty is dominated by the precision of jVusj.
In order to obtain jVusj from experimental measurements
of the rate for an s! u decay process, it is necessary to
quantify the corresponding nonperturbative QCD effects.
In this Letter we present first lattice results from simula-
tions with 2� 1 flavors of domain wall quarks, which
respect chiral and flavor symmetries to high accuracy, for
the evaluation of the form factor f��0� necessary to deter-
mine jVusj from K ! �‘�‘ (K‘3) semileptonic decays.
Precise knowledge of f��0� is crucial also for deducing
jVtdj from a measurement of K ! �0� ��.

Our determination of f��0� includes estimates of all
systematic errors (chiral and q2 extrapolations, discretiza-
tion, and finite-volume effects), and reduces the combined
theoretical and experimental error in jVusj from the
PDG(2006) result of 0.2257(21) to [2]

 jVusj � 0:2249�14�: (2)

The combination jVusf��0�j can be obtained from the
experimental rate for K‘3 decays

 �K!�l� � C2
K
G2
Fm

5
K

192�3 ISEW�1� 2�SU�2�

� 2�EM�jVusj
2jf��0�j

2; (3)

where I is the phase space integral which can be evaluated
from the shape of the experimental form factor, and �SU�2�,
SEW , �EM contain the isospin breaking, short distance
electroweak and long distance electromagnetic correc-
tions, respectively. f��0� is the form factor defined from

the K ! � matrix element of the weak vector current,
V� � �s��u, evaluated at zero momentum transfer
 

h��p0�jV�jK�p�i � �p� � p
0
��f��q

2�

� �p� � p
0
��f��q

2�; (4)

where q2 � �p� p0�2. PDG(2006) quotes [4,5]

 jVusf��0�j � 0:2169�9�; (5)

hence, in order to obtain jVusj at a precision commensurate
with current experiments, we need to determine f��0�with
an error of less than 1%.

In chiral perturbation theory (ChPT), f��0� is expanded
in terms of the light pseudoscalar meson masses

 f��0� � 1� f2 � f4 � . . . ; �fn � O�mn
�;K;���: (6)

Current conservation ensures that in the SU�3�flavor limit
f��0� � 1, hence f2 and f4 are small. Additionally, as a
result of the Ademollo-Gatto Theorem [7], which states
that f2 receives no contribution from local operators ap-
pearing in the effective theory, f2 is determined unambig-
uously in terms of m�, mK and f�, and takes the value
f2 � �0:023 at the physical values of the meson masses
[8]. Our task is now reduced to one of finding

 �f � f��0� � �1� f2�: (7)

Until recently, the canonical estimate of �f � �0:016�8�
was due to Leutwyler and Roos (LR) [8], whereas more
recent ChPT based phenomenological analyses favor a
value consistent with zero (see Table I). These determina-
tions, however, require model input; the 50% error in the
LR result, for example, was estimated within the context of
a simple quark model. Hence a model independent deter-
mination of �f with a reliable error estimate is necessary.
We compile recent lattice and phenomenological results in
Table I. Our lattice calculation has been discussed in
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preliminary form in [17] and we now finalize our results
with the inclusion of the complete set of data and a careful
estimate of all systematic errors.

We simulate with Nf � 2� 1 dynamical flavors gener-
ated with the Iwasaki gauge action [18] at � � 2:13, which
corresponds to an inverse lattice spacing a�1 �
1:73�3� GeV (a � 0:114�2� fm) [19,20], and the domain
wall fermion action [21] with a residual mass of amres �
0:00315�2� [19,20]. The simulated strange quark mass,
ams � 0:04, is close to its physical value [20], and we
choose four values for the light quark masses, amud, which
correspond to pion masses as light as 329 MeV [19,20].
The calculations are performed on two volumes, 163

(�1:83�3 fm3) and 243 (�2:74�3 fm3), at each quark mass,
except the lightest mass which is only simulated on the
larger volume. Simulation details are summarized in
Table II and more details can be found in [19,20].

We start by rewriting the vector form factors given in (4)
to define the scalar form factor

 f0�q
2� � f��q

2� �
q2

m2
K �m

2
�
f��q

2�; (8)

which can be obtained on the lattice at q2
max � �mK �m��

2

with high statistical accuracy [12,22]. In Table III we
present our results for f0�q2

max� for each of the simulated
quark masses and volumes.

For each quark mass, in addition to evaluating f0�q2� at
q2 � q2

max, we determine the form factor at several nega-

tive values of q2, allowing us to interpolate to q2 � 0.
Specifically, in the notation of (4), we evaluate the form
factor with j ~p0j � 0, j ~pj � pL or j ~pj �

���

2
p
pL where pL �

2�=L and L is the spatial extent of the lattice, and also with
j ~pj � 0, j ~p0j � pL or j ~p0j �

���

2
p
pL. To obtain f0�q2� we

use standard ratio techniques [12,13,22], which do not
require normalization of the vector current.

In order to gain the maximum amount of information
from limited data, we perform a simultaneous fit to both the
q2 and quark mass dependencies using the ansatz

 f0�q
2;m2

�;m
2
K��

1�f2��m2
K�m

2
��

2�A0�A1�m2
K�m

2
���

1�q2=�M0�M1�m2
K�m

2
���

2 ;

(9)

with four fit parameters A0, A1,M0,M1, and where f2 is the
NLO term appearing in the chiral expansion (6), evaluated
by inserting the lattice results for m�, mK and the physical
value for f� (132 MeV) into the expression appearing in
ChPT [8] at each quark mass [23].

The expression (9) is well motivated since we know
from the Ademollo-Gatto Theorem that to leading order
�f / �ms �mud�

2, hence we expect

 f0�0��1�f2��m
2
K�m

2
��

2�A0�A1�m
2
K�m

2
���; (10)

which incorporates the correct SU�3�flavor limit, f��0� � 1,
to be a good phenomenological ansatz for the mass depen-
dence of f0�0� � f��0�. This motivates the numerator in
(9), while the denominator comes from simply including a
quark mass dependence into the standard pole dominance
form

 f0�q
2� � f0�0�=�1� q

2=M2�; (11)

where M is a pole mass, which has been shown to describe
the q2 dependence of lattice results of f0�q2� very well
[12,13].

The traditional approach of sequentially interpolating in
q2 (11) followed by chiral extrapolation of f��0� (10)
should agree with our simultaneous fit (9). Fitting the 243

data only yields excellent agreement (shown in the final
two rows of Table IV), with a reduced error evident in the
simultaneous fit, which we therefore take as our best result.
For the 163 data the pole fits generally have a poor �2=dof.
We also find that the simultaneous and sequential fits to the
q2 and mass dependence for the 163 data differ at 1:2�.
Consequently, we only use the 163 data to check that the

TABLE II. Simulation parameters: bare light quark mass
(amud), pion (m�) and kaon (mK) masses for both volumes.

163 � 32 243 � 64
amud m� [GeV] mK [GeV] m� [GeV] mK [GeV]

0.03 0.674(11) 0.723(12) 0.671(11) 0.719(12)
0.02 0.557(9) 0.666(11) 0.556(9) 0.663(11)
0.01 0.428(7) 0.614(10) 0.416(7) 0.604(10)
0.005 	 	 	 	 	 	 0.329(5) 0.575(9)

TABLE III. Results for f0�q2
max�, where q2

max � �mK �m��
2.

163 � 32 243 � 64
amud q2

max [GeV2] f0�q2
max� q2

max [GeV2] f0�q2
max�

0.03 0.002 33(4) 1.000 35(3) 0.002 35(4) 1.000 29(6)
0.02 0.011 78(24) 1.002 41(19) 0.011 52(20) 1.001 92(34)
0.01 0.034 75(66) 1.014 36(81) 0.035 24(62) 1.008 87(89)
0.005 	 	 	 	 	 	 0.060 70(107) 1.021 43(132)

TABLE I. Summary of ChPT and lattice results.

Ref. f��0� �f m� [GeV] a [fm] Nf

[8] 0.961(8) �0:016�8�
[9] 0.978(10) �0:001�10�

[10] 0.984(12) �0:007�12�
[11] 0.974(11) �0:003�11�
[12] 0.960(5)(7) �0:017�5��7� * 0:5 0.07 0
[13] 0.968(9)(6) �0:009�9��6� * 0:49 0.12 2
[14]a,b 0.962(6)(9) �0:015�6��9� c c 2� 1
[15]a 0.967(6) �0:010�6� * 0:55 0.09 2
[16]a 0.965(2) �0:012�2� * 0:5 0.08 2
This work 0.964(5) �0:013�5� * 0:33 0.114 2� 1

aResults in conference proceedings only.
bUsed slope of experimental form factor as input.
cInformation not provided.
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finite-volume effects are small. Tables III and IV demon-
strate that this is the case.

We present the results from a fit to the 243 � 64 data sets
using (9) in Fig. 1. Here the curve shows the fit function at
the physical meson masses, while the difference
f0�q2; mlatt

� ;mlatt
K � � f0�q2; mphys

� ;mphys
K � has been sub-

tracted from our raw data points and the small scatter is
indicative of the quality of our fit.

The quark mass dependence of (9) is presented in Fig. 2.
The solid line represents the fit function evaluated at q2 �
0, plotted as a function of m2

�, while the dashed line is the
contribution coming from the O�p4� terms in the chiral
expansion, 1� f2. Our results clearly indicate a sizeable,
negative value for �f � �0:013�3�, in contrast to the
recent ChPT based results of [9–11]. In Fig. 2 we also
overlay the results given in Table IV for f0�0� obtained
from individual pole fits on each of our ensembles and
earlier Nf � 2 results [13].

So far, we have assumed a pole dominance behavior (9)
in our lattice data, whose q2 dependence differs marginally

at NLO from an expression obtained in ChPT [9]. In order
to estimate the systematic error due to this choice, we also
present in Table IV results for fits to our data using a
quadratic ansatz

 f0�q
2� � a0 � a1q

2 � a2q
4; (12)

together with a chiral extrapolation using (10). A simulta-
neous fit similar to (9) is possible via
 

f0�q
2; m2

�;m
2
K� � 1� f2 � �m

2
K �m

2
��

2

� �A0 � A1 � A2�m
2
K �m

2
���

� �A3 � �2A0 � A1��m
2
K �m

2
���q

2

� �A4 � A0 � A5�m
2
K �m

2
���q

4: (13)

The form of this ansatz is motivated by the expression
obtained in ChPT [9]. We quote the result from a fit to
the 243 � 64 data using (13) in the last row of Table IV,
where we find that the results of the two fits, (9) and (13),
agree within statistical precision and we take the difference
(0.0034) as an estimate of the systematic error in choosing
(9) as our preferred ansatz.

Recently, an alternative parametrization, obtained by
using analyticity and crossing symmetry, has been pro-
posed [24]. We find that fitting our data using this ansatz
leads to results that lie within the systematic uncertainty of
0.0034 discussed above.

Our simulations are performed with a strange quark
mass (ams � amres ’ 0:043) which is heavier than the
physical mass (ams � amres ’ 0:037). Both (9) and (13)
are modeled according to ChPT and this mass difference is
corrected when we insert the physical kaon mass to obtain
our final result. This correction is accurate in as much as
our extrapolation model describes our data, and any error
introduced is included in our estimate of the systematic
error. Future simulations will include a second valence
strange quark mass to decrease the reliance on our fit
model.

FIG. 1 (color online). Scalar form factor, f0�q
2�, together with

the simultaneous fit of (9) as described in the text.

FIG. 2 (color online). Scalar form factor, f0�0�, together with
the simultaneous fit (solid line) on the 243 data (red circles) using
(9).

TABLE IV. Results for f��0� using pole dominance (11) and
quadratic (12) fits to each data set, together with the chiral
extrapolations using (10) with the 243 � 64 data only. The final
row gives the results for simultaneous q2 and quark mass fits [(9)
and (13)] using the same data sets.

Pole Quadratic
amud f��0� �2=dof f��0� �2=dof

163 � 32
0.03 0.99925(8) 5:0=3 0.99938(12) 4:2=2
0.02 0.9951(6) 13:5=3 0.9959(9) 13:0=2
0.01 0.9889(26) 13:9=3 0.9866(33) 10:9=2

243 � 64
0.03 0.9991(2) 2:1=3 0.9990(2) 1:5=2
0.02 0.9960(7) 2:3=3 0.9962(9) 1:9=2
0.01 0.9841(29) 10:4=3 0.9806(39) 7:7=2
0.005 0.9774(35) 4:0=3 0.9749(59) 2:7=2
Chiral 0.9644(39) 3:4=2 0.9622(61) 5:1=2

Sim. fit 0.9644(33) 28:7=16 0.9610(43) 26:4=14
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Finally, since we simulate at a single lattice spacing, we
are unable to extrapolate to the continuum limit. However,
leading lattice artefacts with domain wall fermions are of
O�a2�2

QCD�; assuming �QCD 
 300 MeV we estimate
these to be no larger than� 4% (of 1� f�). A comparison
of the pion and kaon decay constants obtained from our
simulations with their physical values provides a test for
the reliablity of our result. After including the effects to
NLO due to chiral logs, we find f� and fK about 4% below
experiment [20], which is consistent with our estimated
scaling error. We will explicitly check this for K‘3 decays
on our new ensemble which is being generated on a finer
lattice. Note that our current uncertainty is dominated by
statistics and the chiral and q2 extrapolations and not by the
discretization error. Hence our final result is

 f��0� � 0:9644�33��34��14�; (14)

where the first error is statistical, and the second and third
are estimates of the systematic errors due to our choice of
parametrization (9) and lattice artefacts, respectively. To
put this result in context, we compare our value with other
determinations of f��0� in Fig. 3. We see that our result
agrees very well with the Leutwyler-Roos value [8] and
earlier lattice calculations [12–15]. In particular, we note
that our findings prefer a sizeable, negative value for �f �
�0:0129�33��34��14�, in contrast to recent ChPT based
phenomenological results [9–11].

Using jVusf��0�j � 0:2169�9� from PDG(2006) [4,25]

 jVusj � 0:2249�9�exp�11�f��0�; (15)

and combined with jVudj � 0:973 77�27� [4] we find

 jVudj
2�jVusj

2�jVubj
2�1�	; 	�0:0012�8�; (16)

compared with the PDG(2006) [4] result, 	 � 0:0008�10�.
Further reduction in the lattice error is imperative. Our q2

interpolation systematic is removable in principle [26] and
we are in the process of addressing both this and discreti-
zation systematics with a new set of simulations.
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