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When a classical black hole is perturbed, its relaxation is governed by a set of quasinormal modes with
complex frequencies ! � !R � i!I. We show that this behavior is the same as that of damped harmonic
oscillators whose real frequencies are �!2

R �!
2
I �

1=2, rather than simply !R. Since, for highly excited
modes, !I � !R, this observation changes drastically the physical understanding of the black hole
spectrum and forces a reexamination of various results in the literature. In particular, adapting a derivation
by Hod, we find that the area of the horizon of a Schwarzschild black hole is quantized in units �A �
8�l2Pl, in contrast with the original result �A � 4 log�3�l2Pl.
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Perturbations of black holes (BHs) vanish in time as a
superposition of damped oscillations, of the form

 e�!It�a sin�!Rt� � b cos�!Rt��; (1)

with a spectrum of complex frequencies ! � !R � i!I.
These quasinormal modes are of great importance in
gravitational-wave astrophysics and might be observed in
existing or advanced gravitational-wave detectors.
Furthermore, BHs are often used as a testing ground for
ideas in quantum gravity, and their quasinormal modes are
obvious candidates for an interpretation in terms of quan-
tum levels.

For Schwarzschild BHs, the quasinormal mode frequen-
cies are labeled as !nl, where l is the angular momentum
quantum number. For each l (with l 	 2 for gravitational
perturbation), there is a countable infinity of quasinormal
modes, labeled by the ‘‘overtone’’ number n, with n �
1; 2; . . . . In Fig. 1 we show the frequencies of the l � 2
gravitational perturbations of a Schwarzschild BH of mass
M: Im!n grows monotonically with n, so the least damped
mode corresponds to n � 1 and has 2MIm! ’ 0:1779 (we
use units G � c � 1). This is the mode that dominates the
relaxation process. The next least damped mode is n � 2,
with 2MIm! ’ 0:5478, and so on. In contrast, the real part
of ! is not monotonic with n. It rather decreases at first,
until it becomes exactly zero for n � 9, and then starts
growing again, reaching a constant asymptotic value. For
large n the asymptotic behavior of the frequencies of
gravitational perturbations is independent of l and is given
by [2–10]

 8�M!n � ln3� 2�i�n� 1
2� �O�n

�1=2�: (2)

The pattern shown in Fig. 1 repeats for higher l. There is
always a value �nl of n such that, for n < �nl, Re�!n;l�
decreases with n, while above this critical value it raises
again, up to the asymptotic value ln3=�8�M� given by
Eq. (2).

If we compare with the normal mode structure of famil-
iar classical systems, such as a vibrating rod, we have to

admit that the structure displayed in Fig. 1, and particularly
the ‘‘inverted branch’’ formed by the modes with n 
 �nl, is
quite peculiar. In classical systems, the least damped mode
is in general also the one with the lowest value of Re!, and
typically Re! and Im! both increase with n. In contrast, in
Fig. 1 the least damped mode is the one with the highest
possible value of Re! and, for n < �nl, Re! is a decreasing
function of Im!. Even the ‘‘normal’’ branch n > �nl is
somewhat puzzling. Now Re! increases with n, which is
more consistent with physical intuition, but still the fact
that it saturates to a finite value is difficult to understand. In
a normal macroscopic system, the underlying reason why,
for large n, Im!n goes to infinity (and therefore these
modes decay very fast) is that also Re!n diverges, so
increasing n the wavelength ln � 2�=Re!n gets smaller
and smaller, and finally becomes of the same order as the
lattice spacing of the underlying atomic structure. At this
point the perturbation can no longer be sustained as a wave
by the medium and quickly disappears in the thermal
agitation of the lattice nuclei.
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FIG. 1. Re�2M!nl� against Im�2M!nl� for l � 2 and n �
1; 2; . . . ; 12, and for n � 20, 30, 40. Data taken from [1].
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The quasinormal mode structure of Fig. 1 is no less
puzzling if we attempt a semiclassical description and we
interpret it as the structure of excited levels of a quantum
BH. In normal quantum systems, the levels with high
excitation energy, En � @Re!n, are those that decay fast,
first of all because, in a multipole expansion, the decay
width � grows with ! (e.g., ��!3 for a dipole transition
and ��!5 for a quadrupole transition) and, second, be-
cause they can decay into many different channels, i.e.,
into all the levels with lower excitation energy not forbid-
den by selection rules. So, again it is very surprising that,
for n < �nl, we have an inverted structure, where the life-
time of the state increases with its excitation energy. Quite
puzzling is also the presence of a state with Re!n � 0, and
Im!n � 0 (which exists for all l). So, the motivation of this
work was to try to obtain a physical understanding of this
level structure.

To this purpose, we describe a quasinormal mode as a
damped harmonic oscillator ��t�, governed by the equation

 

��� �0
_��!2

0� � f�t�; (3)

where �0 is the damping constant,!0 the proper frequency
of the harmonic oscillator, and f�t� an external force per
unit mass. Solving this equation in Fourier transform we
get

 ��t� � �
Z 1
�1

d!
2�

~f�!�
�!�!���!�!��

ei!t; (4)

where !� are the two roots of the equation !2 � i�0!�
!2

0 � 0, i.e.,

 !� � �
�����������������������������
!2

0 � ��0=2�2
q

� i
�0

2
: (5)

Consider the response to a Dirac delta perturbation, f�t� /
��t�, so ~f�!� / 1. For t < 0 we can close the integration
contour in Eq. (4) in the lower half-plane and, since !�
both lie above the real axis, we get zero, as required by
causality. For t > 0 we close the contour in the upper half-
plane and we pick the residue of the two poles. So the result
for ��t� is a superposition of a term oscillating as ei!�t and
of a term oscillating as ei!�t. Therefore, the behavior (1) is
reproduced by a damped harmonic oscillator, with the
identifications

 

�0

2
� !I;

�����������������������������
!2

0 � ��0=2�2
q

� !R; (6)

which can be inverted to give

 !0 �
�������������������
!2
R �!

2
I

q
: (7)

We see that the seemingly obvious identification !0 � !R
holds only when �0=2 !0, i.e., for very long-lived
modes. For most BH quasinormal modes we are in the
opposite limit; in particular, for highly excited modes, we
have !I � !R (see Fig. 1), so !0 ’ !I rather than !0 ’

!R. If we model the BH perturbations in terms of a
collection of damped harmonic degrees of freedom (which
can be useful both at the classical level, to have an intuitive
physical picture of a BH as a whole, and in semiclassical
quantum gravity, to get hints about the quantum structure
of spacetime) the correct identification for the frequency of
the equivalent harmonic oscillator is given by Eq. (7),
together with �0=2 � !I.

In terms of !0 the energy level structure of a BH
becomes physically very reasonable, and for l � 2 it is
shown in Fig. 2 (a similar result holds for higher l). We see
that the frequency �!0�n increases monotonically with the
overtone number n. Recall that the damping coefficient
�0=2 is equal to !I, so also �0=2 increases monotonically
with n. Thus, in terms of the equivalent harmonic oscil-
lators, the least damped mode, which is still the n � 1
mode, is also the one with the lowest value of !0, and the
larger is �!0�n, the shorter is the lifetime, as we expected
from physical intuition.

For large n, using Eq. (2) and introducing the Hawking
temperature TH � @=�8�M�, Eq. (7) can be written in a
very suggestive form,

 @ �!0�n �
������������������
m2

0 � p
2
n

q
; (8)

where

 m0 � TH ln3; pn � 2�TH�n�
1
2�: (9)

The expression for pn is especially intriguing, since it
corresponds to a particle quantized with antiperiodic
boundary conditions on a circle of length L � @=TH �
8�M. It is also interesting to observe that the equal spacing
of the levels for large n is just what would be expected
from a description of the horizon in terms of an effective
membrane [11]. We can now reexamine some aspects of
quantum BH physics, which have been previously dis-
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FIG. 2. Re�2M�!0�nl� for l � 2, against n.
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cussed assuming that the relevant frequencies were �!R�n,
using �!0�n instead.

Area quantization.—The idea that in quantum gravity
the area of the BH horizon is quantized in units of l2Pl
(where lPl is the Planck length) has a long history that
goes back to Bekenstein [12]. His result was that the area
quantum of a Schwarzschild BH is �A � 8�l2Pl. Hod [5]
found a similar quantization, but with a different numerical
coefficient, using the properties of quasinormal modes of
Schwarzschild BHs. Since for a Schwarzschild BH the
horizon area A is related to the mass M by A � 16�M2,
a change �M in the BH mass produces a change �A �
32�M�M in the area. Hod considered a transition from an
unexcited BH to a BH in a mode with n very large. He
argued that for large n Bohr’s correspondence principle
should hold, so a semiclassical description should be ade-
quate even in the absence of a full theory of quantum
gravity, and concluded from Eq. (2) that the minimum
quantum that can be absorbed in this transition has �M �
@! � @ ln�3�=�8�M�. This gives �A � 4 ln�3�l2Pl (recall
that in units G � c � 1 we have l2Pl � @). The numerical
factor 4 ln�3� generated some excitement because of pos-
sible connections with loop quantum gravity [13] (see,
however, [14]).

This conjecture is stimulating, but suffers from a number
of difficulties. First of all, further studies showed that the
factor 4 ln3, which has its origin in !R [see Eq. (2)], is not
universal. For instance, we can consider a rotating BH with
angular momentum per unit mass a. Computing the
asymptotic behavior of the quasinormal mode frequencies
of gravitational perturbations, one finds that the large n
limit and the limit a! 0 do not commute. If we first
consider the asymptotic value for a Kerr BH and then we
let a! 0, !R does not reduce to ln3=�8�M�, but rather
vanishes as a1=3 [7,15–17]. This means that the area quan-
tum becomes arbitrarily small if we give to the BH an
infinitesimal rotation. Similarly, studying charged BHs,
one finds that !R changes discontinuously if we inter-
change the limits Q! 0 and n! 1. Furthermore, the
study of generic spin-j perturbations revealed that the
leading asymptotic value of the quasinormal mode fre-
quencies is given by [7]

 e8�M! � ��1� 2 cos�j�: (10)

For gravitational perturbations (j � 2) and for scalar per-
turbations (j � 0) the right-hand side of Eq. (2) is equal to
�3, and we recover Eq. (2). For vector perturbation (j �
1), the right-hand side of Eq. (10) is equal to �1, and we
get 8�M!n � 2�in, so the real part is now zero rather
than ln3, and the corresponding quantum of area would
also be zero. Equation (10) holds also for half-integer
perturbations [18,19]; in this case the right-hand side of
Eq. (10) is equal to �1, and 8�M!n � 2�i�n� 1=2�, so
again Re!n vanishes asymptotically. The conclusion is that
the asymptotic value of Re!n [and also whether pn in

Eq. (9) is proportional to n or to n� 1=2] depends on
the spin of the perturbation and is not an intrinsic property
of the BH. A similar nonuniversal behavior was discussed
in [20] in a large class of BH models that in the �r�; t� plane
effectively reduce to 2D dilaton gravity. In conclusion, the
area quantization determined by Hod’s conjecture does not
reflect any intrinsic property of the BH, and the would-be
area quantum vanishes in various instances.

Another criticism that can be raised to the above deri-
vation is that one has considered only transitions from the
ground state (i.e., a BH that is not excited) to a state with
large n (or vice versa). However, it is also legitimate to
consider transitions n! n0 where n and n0 are both large.
The Bohr correspondence principle, which was advocated
above, actually only holds for transitions where both n,
n0 � 1, so these are, in fact, the only transitions that should
be considered within the above logic. Now, if we use
Eq. (2), we see that in a transition n! n0 with n, n0 �
1, Re!n changes by O�1=n1=2�. This means that in these
transitions the area changes by arbitrarily small amounts.
So, even restricting to the j � 2 perturbation of
Schwarzschild BHs, the area quantization holds only for
a transition from (or to) a BH in its fundamental state,
while transitions among excited levels do not obey it.

All the above difficulties are removed when, in Hod’s
conjecture, we use �!0�n rather than �!R�n. We consider a
transition n! n� 1, with n large. Then �!0�n ’ �!I�n
and Eq. (2) gives an absorbed energy �M � @��!0�n �
�!0�n�1� � @=�4M�, so

 �A � 32�M�M � 8�l2Pl; (11)

which coincides with the old Bekenstein result. At large n
all other transitions require a larger energy; e.g., n! n�
2 takes away about twice the energy, since for large n the
�!0�n are equally spaced. Even if we dare to extrapolate to
low n, where semiclassical reasoning might go wrong, we
still remain with a nonvanishing area quantum, of the order
of 8�l2Pl. As it is clear from Fig. 2, the transition from n �
2 to n � 1 is the one with the smallest possible jump.
Using the values of !R and !I given in [1], we find
�!0�n�2 � �!0�n�1 ’ 0:2=�4M�, corresponding to �A ’
0:2�8�l2Pl�, while the transition from n � 1 to an unexcited
BH has �A ’ 1:5�8�l2Pl�.

Contrary to what happens for !R, the quantum of area
obtained from the asymptotics of �!0�n is an intrinsic
property of Schwarzschild BHs: for large n the leading
asymptotic behavior of !0 is given by the O�n� term in !I,
and it does not depend on the spin content of the perturba-
tion, as we see from Eq. (10). Furthermore, in contrast to
what happens to !R, for !I the limits a! 0 and n! 1
commute, and similarly for the limits Q! 0 and n! 1
[7,15–17]. The result (11) can therefore be consistently
taken as an indication of a quantization of the area of the
horizon of a Schwarzschild BH. (The generalization of
these results to other spacetimes might, however, be non-
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trivial; see, e.g., [21].) In this context, it is useful to remark
that a gedanken experiment with black holes reveals the
existence of a generalized uncertainty principle, which
implies a minimum length of order lPl [22], and which
fits very nicely with the above result.

Entropy and microstates.—If, for large n, the horizon
area is quantized, with a quantum �A � �l2Pl (where for us
� � 8� while for Hod � � 4 ln3), the total horizon area A
must be of the form A � N�A � N�l2Pl, where N is an
integer. Observe that N is not the same as the integer n that
we used to label the quasinormal mode. Even for a BH in
its ground state, n � 0, N is very large since it must
account for the area of the unexcited BH, N � A=�A �
16�M2=��l2Pl�. The famous Bekenstein formula associates
with the BH an entropy S � A=�4l2Pl�, and therefore at
level N we expect that a BH should have a number of
microstates g�N� given by g�N� / expf��A�N=�4l2Pl�g �
expf�N=4g. One might try to restrict the possible values
of � as follows [23,24]. One admits the presence of a
subleading term in the Bekenstein formula, S �
A=�4l2Pl� � const, and fixes the constant requiring that, for
N � 1, there is only one microstate, g�N� � 1. This gives
g�N� � expf��=4��N � 1�g. One then requires that g�N�
be an integer. This restricts � to be of the form � � 4 lnk,
with k an integer. The value � � 4 ln3 is of this form,
which is not the case for � � 8�.

However, a number of objections can be raised to this
attempt to restrict �. First of all, in the semiclassical
regime where our results could be trusted, N is very large,
of order of A=l2Pl, so g�N� is the exponential of a very large
number. Even if the number of microstates must be an
integer, there is no hope that a semiclassical computation
can reproduce this number with a precision of order one,
which is necessary to distinguish an integer from a non-
integer value. In fact, this does not happen even in classical
textbook computations in statistical mechanics. Fur-
thermore, the above expression for g�N� assumes that the
same area quantum �A is valid from large N down to N �
1, where our semiclassical approximation is certainly un-
justified. Indeed, we see from Eqs. (8) and (9) that the
levels are equally spaced only in the limit of highly excited
modes; otherwise, there are deviations.

Using our value of � in S � �N=4, we find, to leading
order in the large N limit,

 S � 2�N �O�1�; (12)

and g�N� / expf2�Ng. It is quite interesting to observe
that Eq. (12) agrees with the result found in Refs. [25,26],
with apparently very different arguments. In these works,
using the periodicity of the Euclidean BH solutions, it was
found that the entropy is an adiabatic invariant, with a
spectrum given, through Bohr’s correspondence principle,

precisely by Eq. (12). This argument required only stan-
dard rules of quantum mechanics, but it was somewhat
speculative in that the rules were applied in Euclidean
time.

On the other hand, the periodicity of the Euclidean
solution also entered implicitly our arguments, since it is
at the basis of the analytic computation of the asymptotic
quasinormal modes frequencies, Eq. (10). So it appears
that the periodicity of the BH solutions in Euclidean time,
besides providing a quick derivation of the value of
Hawking temperature, is also at the origin of the area
quantization law.
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