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We present novel Fourier Monte Carlo simulations of a compressible �4-model on a simple-cubic
lattice with linear-quadratic coupling of order parameter and strain, focusing on the detection of
fluctuation-induced first-order transitions and deviations from standard critical behavior. The former is
indeed observed in the constant stress ensemble and for auxetic systems at constant strain, while for
regular isotropic systems at constant strain, we find strong evidence for Fisher-renormalized critical
behavior and are led to predict the existence of a tricritical point.
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A proper treatment of strain effects is absolutely essen-
tial for understanding phase transitions in real solids.
Despite extensive efforts made in clarifying the role of
elasticity in affecting phase transitions, the existing litera-
ture reveals quite a bit of persistent controversy [1–3],
which also hints at the great difficulty of questions posed
by these systems equally to theorists, experimentalist, and
computer simulators alike. Theoretical analysis, most of
which took place during the dawn [4,5], the boom years
[6,7] of the renormalization group (RG), indicates that
many different situations (boundary conditions, anisotropy,
symmetry and strength of coupling between primary order
parameter and strain) must be carefully distinguished. This
leads to a wealth of predictions of various phase transitions
of first or second order with bare or Fisher-renormalized
[5] critical exponents. Experimentally, however, finite tem-
perature resolution, defect smearing, and other effects can
make it quite difficult to distinguish possibly second from
weakly first-order transition, while computer simulations
are fundamentally challenged by the long-range strain
effects. To illustrate the difficulties, consider a �4-model
with spins s�x� coupled in a quadratic-linear way to a
fluctuating strain field �ij built from six homogeneous
strain components and the spatial derivatives of a real-
valued displacement vector field, governed by the
Hamiltonian [7]
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In a MC simulation of a discretized approximation to this
model, one basically has two choices, which, from the
point of view of real-space algorithms, are equally unat-
tractive. If the elastic degrees of freedom are kept explic-
itly, the inhomogeneous components of a strain tensor field
and the accompanying elastic energy have to be recalcu-
lated at every move, which is time consuming. On the other

hand, an exact elimination of the elastic degrees of free-
dom, which only enter harmonically into the above
Hamiltonian by Gaussian integration, leaves us with an
effective Hamiltonian
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Compared to the incompressible �4 Hamiltonian, the
fourth order coupling coefficient A4 displays a renormal-
ization by a complicated nonlocal term. In terms of its
Fourier transform ~K�k� �

P
ij

~Kij�k�, this term can be
calculated from summing over the components of the
tensor function
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which is in turn built from the inverse of the (bare) dy-
namical phonon matrix D0

ik�k� �
P
jlC

0
ijklkjkl. It thus

comes as no surprise that, as far as the author knows, it is
only in the case of elastic isotropy in cubic systems (see
below) that a relatively compact and simple real-space
representation of this Hamiltonian that lends itself to a
real-space MC algorithm can be derived [2]. In general,
the nonlocal character of this interaction, which reflects the
long-range strain interaction, renders this effective
Hamiltonian useless in designing real-space MC algo-
rithms. An alternative route (cf., e.g., Ref. [3]) is to repre-
sent the elastic interactions by pair, triple, and four-spin
interactions using effective interaction potentials like the
Stillinger-Weber potential. Unfortunately, using such ap-
proaches, the elastic behavior of the system is much harder
to control than by, say, imposing a set of ‘‘bare elastic
constants’’ on the system right from the start. In particular,
one regrets the lack of control of elastic anisotropy, which,
while certainly found in most real systems, is a crucial
quantity in theoretical calculations [7]. Not unlike in a real-
world experiment, an additional concern is the distinction
of weak first-order from truly continuous phase transitions.
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In principle, this can be done using finite size scaling (FSS)
[8,9], but may fail unless one manages to handle large
system sizes (see below). Moreover, from a conceptual
point of view, critical behavior manifests itself in the
long wavelength limit. Real-space algorithms are, how-
ever, unable to take advantage of this fact.

In contrast, our newly developed Fourier Monte Carlo
(FMC) algorithm [10] is tailor-made to deal with the
problems listed above. In this algorithm, MC simulations
are carried out exclusively in Fourier space, using the real
an imaginary parts of the Fourier amplitudes ~s�k� as MC
variables. That such a type of simulation is feasible has
recently been demonstrated by solving the long-standing
problem of directly computing the gradient corrections to
coarse-grained Landau-Ginzburg (LG) free energies de-
rived from a lattice �4 Hamiltonian [10] from MC simu-
lations. While we refer to Ref. [10] for a detailed
description of this algorithm, here we only note that for
the method to be applicable, it is necessary to rewrite the
effective Hamiltonian purely in terms of the Fourier am-
plitudes ~s�k�, ~S�k� of the spin field s�x� and its accompany-
ing squared spin configuration S�x� :� s2�x� in such a way
that both amplitudes enter at most quadratically. Indeed, on
a simple-cubic lattice of L3 � N sites with periodic bound-
ary conditions and unit lattice constant, Eqn. (2) can be
restated in the comparatively simple form
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where ~K�0� is replaced by zero in the constant homoge-
neous strain ensemble, ~s�k� � N��1=2�P

xs�x�e
�ikx, and

~S�k� � N��1=2�P
p ~s�p�~s�k� p�. Moreover, we introduce

the following novel modification of the finite size scaling
approach. In studying critical behavior, we can drastically
increase the accessible linear system size L by introducing
a relatively small cubic cutoff ��l� :� 2�l=L, l� L=2 in
the discrete Brillouin zone (BZ), which represents a huge
advantage over real-space based approaches. The effect of
the residual modes with k-vectors outside of this cutoff is
absorbed in assuming a linear T-dependence A2�T� �
A0�T � T0�, while D and A4 are kept T-independent,
such that H 0 actually resembles a universal coarse-
grained LG Hamiltonian [10]. When using FSS on such
an effective Hamiltonian with cutoff, only systems with
equal fractions of vectors inside and outside the cutoff ��l�
in the BZ can be compared in a meaningful way. This
requirement leads to a classification [10] of systems of size
L and imposed cutoff ��l� into families (L, l) with com-
mon label ��L; l� :� L=�2l� 1�. For the present simula-
tions, we focused on the ‘‘small’’ cutoff (� � 4) family
f�12; 1�; �20; 2�; �28; 3�; �36; 4�; . . .g.

For a general crystal class and a given set of bare elastic
constants, ~K�k� can in principle be tabulated for all rele-

vant k-vectors during the startup of the simulation. Should
there exist k-vectors, for which A4 � 2 ~K�k�< 0, then
stability would force one to add higher, e.g., sixth order
terms �A6=6�s6, A6 > 0, to the bare Hamiltonian. A stan-
dard mean field analysis then yields a trivial [2]’’ first-order
phase transition (cf. Ref. [11]). In cubic systems, this is
excluded if the stability condition

 A4 > 2g2
0�0 (5)

holds. In this more interesting case, a naive mean field
treatment (for which the specific heat exponent �0 of the
rigid model is always zero) would therefore yield a second
order transition. Nevertheless, for arbitrary cubic systems
at constant pressure with �0 > 0 and anisotropic ones at
constant volume, a refined RG analysis [2,7] predicts a
fluctuation-induced first-order transition. According to
Bergman and Halperin [7], a second order transition should
only be expected for isotropic cubic systems under the
quite restrictive assumption that not only the total volume
in fixed but even each individual lattice site on the surface
of the crystal is pinned. If �0 > 0, the exponents of this
second order transition should be ‘‘Fisher-renormalized,’’
i.e., � � � �0

1��0
, � � �0

1��0
, � � �0

1��0
, 	 � 	0

1��0
. Theo-

retically, for periodic boundary conditions, first-order tran-
sitions should thus occur in all of the cases listed above.
However, for extremely weak first-order transitions, where
the correlation length remains finite but reaches values that
are comparable to L, the actual crossover from a pseudo-
critical to first-order behavior may be hard or even impos-
sible to resolve using FSS [12].

The present simulations were undertaken with the fol-
lowing common set of parameters: D � 0:01, A0 � 1:0,
T0 � 1:0 in arbitrary units. At fixed compressibility �0 �
1:3, the bare cubic elastic constants C0

12 and C0
44 were

parametrized by varying C0
11 and the anisotropy parameter

A0 [7]. Finally, the common choice g0 � 0:55 guarantees
the stability condition of Eqn. (5). From the perspective of
pure Landau theory, the constant homogeneous strain en-
semble is certainly the most remote one. In the case of
elastic isotropy (A0 � 0), choosing C0

11 � 0:8 and thus
C0

12 � 0:7538, C0
44 � 0:023, the minima of the energy

cumulant E4 � 1� hE4i=3hE2i2 are seen to rapidly ap-
proach the trivial value of 2=3 with growing L, which
signals a second order transition (cf. the insets of Fig. 1).
At their common [13] intersection temperature Tc �
0:588, the intersection height B	4 :� B�L;l�4 �Tc� 
 0:44 of
the so-called Binder cumulant B4 � 1� hm4i=3hm2i2 re-
lated to the magnetization per site m � N�1P

xs�x� differs
markedly from the universal Ising value B	Ising

4 
 0:47
(main part of Fig. 1). Following further standard proce-
dures of FSS, an evaluation of the logarithmic
T-derivatives of the observables B4, hjmji, hm2i, and hm4i
at Tc yields a critical exponent 	 � 0:7� 0:04, which,
considering the value �Ising

0 � 0:108 of the specific heat
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exponent for the pure 3d Ising model, is in excellent
agreement with a Fisher-renormalized value 	 �
0:705045 of the 3d Ising exponent 	Ising

0 
 0:6289. The
peaks of the recorded specific heat data show a tendency to
saturate rather than diverge with growing L, indicating a
change of sign of � with respect to �0 > 0, which, apart
from precision of numerical values, certainly represents the
most striking fingerprint of Fisher renormalization [14] (cf.
left upper plot of Fig. 2). For further confirmation, the MC
observables O � c�
� (specific heat), hjmji�
� (modulus of
magnetization), and �0 � N�hm2i � hjmji2�=kBT (modi-
fied susceptibility [15]) were compared to the universal
FSS ansatz [13,16]

 hOi � L�O=	�fO�x� � L
�!hO�x� � . . .�; x :� L1=	


(6)

where �O � �, ��, �, respectively. Given the universal
function hO�x�, the rescaled data L��=	hOi�
� should col-
lapse onto the universal function f0�x� after subtraction of
L�!hO�x� when parametrized by x. Taylor expanding the
subleading universal scaling correction functions hO�x� to
fifth order and treating the expansion coefficients as fit
parameters, this was indeed found to be possible using
precisely the Fisher-renormalized exponents correspond-
ing to their 3d Ising counterparts and a Wegner-correction
exponent [16] !
 0:8 (cf. Figure 2). In summary, to the
best of our knowledge, convincing evidence for Fisher
renormalization of elastic systems is observed in simula-
tions for the first time.

For A0 � 0 and at fixed �0 � 3=�C0
11 � 2C0

12�> 0, we
are still free to vary C0

11 > 0 as long as the bare stability
conditions C0

44 > 0 and C0
11 >C0

12 are satisfied. If C0
11 is

chosen large enough at fixed bare compressibility �0, these
conditions also allow for the somewhat unusual possibility
C0

12 < 0 which characterizes so-called auxetic materials

which display an expansion in directions transverse to a
certain uniaxial tensile loading. For �0 � 1:3 and C0

11 �
10:, we get C0

12 � �3:846 and C0
44 � 6:923. For these

parameter values, our simulations reveal clear signs of a
first-order transition. As can be seen in Fig. 3, the Binder
cumulants B�L;l�4 show negative branches, and the minima
of the energy cumulants E�L;l�4 converge towards E14 <
0:634. In passing, we note that while these FSS findings
stringently prove the first-order character of the bulk tran-
sition, typical first-order behavior was also found in addi-
tional Wang-Landau simulations of the order parameter
probability distribution for a given finite (L, l)-system.
With respect to variation of C0

12, we are thus led to predict
the existence of a tricritical point. In a first naive guess,
neglecting corrections to the bare value resulting from the
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FIG. 2. Left upper plot: logarithmic slopes of B4, hm2i, and
hm4i at Tc. Remaining plots: fits of MC data for c�T�, hjmji�T�,
and �0�T� over their common x-domain using Fisher-
renormalized exponents combined with the FSS ansatz (6).
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dence of energy cumulants E�L;l�4 �T�. Right inset: dependence of
minima of E�L;l�4 on L�3.
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FIG. 1. Cumulants for A0 � 0, C0
11 � 0:8. Main figure:

T-dependence of Binder cumulants B�L;l�4 �T� in the vicinity of
common intersection temperature Tc. Left inset: T-dependence
of energy cumulants E�L;l�4 �T�. Right inset: scaling behavior of
the minima of E�L;l�4 with inverse system volume L�3.
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RG flow of C0
12, we estimate its location at C0

12 � 0, which
results from choosing C0

11 � 2:307. Indeed, at these pa-
rameter values, the Binder cumulants B�L;l�4 �T�, which in-
tersect at B	4 � B�L;l�4 �Tc� 
 0:475, are found to fluctuate
around zero in some temperature region above Tc �
0:6588 (cf. Figure 4), and the minima of the energy cumu-
lants E�L;l�4 seem to slowly converge towards 2=3. A calcu-
lation of the exponent 	 by FSS yields 	 � 0:5� 0:02
reminiscent of a weak first-order transition [16] (cf. inset
of Fig. 4).

For nonauxetic but elastically anisotropic systems, we
are currently unable to explicitly verify the first-order
character predicted by theory. In fact, the FSS observed
is similar to criticality, but the computed exponents appear
to be nonuniversal. For instance, for C0

11 and A0 � 0:9, we
find 	 � 0:6734� 0:03, whereas at A0 � 1:0, we have 	 �
0:76� 0:05. We interpret the appearance of these nonun-
iversal exponents as pseudocritical behavior, i.e., a cross-
over precursor to another critical RG fixed point or a
possibly weak first-order transition that may be clearly
detectable only for system sizes exceeding those accessible
to the present simulations. Of course, this may also be the
case for isotropic systems, where we observed the Fisher-
renormalized exponents and argued about the possibility of
a tricritical point. In comparing theoretical predictions to
our results, one must be aware that the boundary condition
of fixed homogeneous strain is somewhat less restrictive
than Bergman and Halperin’s condition of pinned surface
atoms, which also excludes the appearance of surface
waves, but stricter than that of mere constant total volume.
Passing to the constant stress ensemble, we report the
observation of first-order transitions for all considered
parameters in the FSS analysis. The corresponding behav-
ior of cumulants is quite similar to that shown in Fig. 3.
Because of space limitations, further details are omitted

here. Our approach is generalizable to n-vector models
with anisotropic fourth order couplings on noncubic latti-
ces and, e.g., bilinear order parameter-strain couplings.

The author is indebted to Professors K. Binder and
C. Dellago for numerous discussions.
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