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A Bose-Einstein condensate in a tilted double-well potential under the influence of time-periodic
potential differences is investigated in the regime where the mean-field (Gross-Pitaevskii) dynamics
become chaotic. For some parameters near stable regions, even averaging over several condensate
oscillations does not remove the differences between mean-field and N-particle results. While introducing
decoherence via piecewise deterministic processes reduces those differences, they are due to the
emergence of mesoscopic entangled states in the chaotic regime.
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Experimentally it is possible to generate precisely con-
trollable double-well potentials for Bose-Einstein conden-
sates (BECs) (Ref. [1] and references therein). A future
goal for this system is the realization of mesoscopic en-
tanglement [1]. When combined with a time-periodic po-
tential difference between the two wells, a BEC in a double
well could also be used to investigate quantum chaos [2–
5]. Another system which is widely used to investigate
quantum chaos is the quantum delta-kicked rotor [6–8].
Research on quantum chaos includes topics like quantum
signatures of chaos [9], quasistationary distributions [10],
entanglement [11,12], and decoherence [13].

Often a mean-field approach within the Gross-Pitaevskii
equation is applied to describe BECs. Still, there are no-
ticeable differences between mean-field dynamics and
quantum dynamics: only the latter displays the well-known
collapse and revival phenomenon (cf. [14]). By time-
averaging over several of those oscillations, these differ-
ences usually disappear. However, preliminary results [15]
for the periodically driven double-well potential indicate
that even under time average, mean-field dynamics and
quantum dynamics can display qualitatively different re-
sults in the regime for which the mean-field dynamics
become chaotic.

In this Letter these differences are investigated system-
atically. First, the N-particle Hamiltonian is introduced for
which the Gross-Pitaevskii equation corresponds to a
driven nonrigid pendulum. If decoherence is implemented
on the N-particle level via piecewise deterministic pro-
cesses, the quantum dynamics can become qualitatively
similar to the mean-field dynamics. The reason for the
remaining differences between both approaches is the
emergence of mesoscopic entangled states.

To describe a BEC in a double well with single-particle
tunneling frequency � and pair interaction energy 2@�, we
use the Hamiltonian in two-mode approximation [16]:
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where â�y�j creates (annihilates) a boson in well j; �0

models the tilt and �1 is the driving amplitude. Such
Hamiltonians have been used for schemes of entanglement
generation [17,18]; without the periodic driving, entangle-
ment has been investigated in BECs [19,20]. Other appli-
cations include high precision measurements, many-body
quantum coherence [21,22], and spin systems [23].

On the level of the Gross-Pitaevskii equation for the
above model, a wave function is characterized by the
variables � and �, where cos2��=2� (sin2��=2�) is the
probability of finding the condensate in well 1 (well 2)
and exp�i�� is the phase between the two wells. The
correspondingN-particle wave function (‘‘atomic coherent
states’’ [24]) with all particles in this state reads (in an
expansion in the Fock basis jn; N � niwith n atoms in well
1)
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The mean-field dynamics can be mapped to that of a non-
rigid pendulum [15,25]; including periodic driving the
Hamilton function reads �z � cos2��=2� � sin2��=2��
 

Hmf �
N�
�
z2 �

��������������
1� z2

p
cos���

� 2z
�
�0

�
�
�1

�
sin
�
!
�
�
��
; � � t�: (3)

The experimentally measurable [1] population imbalance
z=2 can be used to characterize the mean-field dynamics.
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Figure 1 shows typical Poincaré surfaces of section. The
initial parameters were chosen such that tunneling in the
driven, tilted double-well potential is enhanced by ‘‘pho-
ton’’-assisted tunneling [26] (cf. Ref. [27]). If the interac-
tion is not too low (N�=� * 0:4–0:6), regular and chaotic
dynamics coexist [Fig. 1(a), cf. [28]]; for low interaction
the dynamics are regular [Figs. 1(b) and 1(c)].

For the parameters corresponding to the Poincaré sur-
face of section in Fig. 1(a), in Fig. 2(a) we display the
differences between N-particle and mean-field dynamics
by numerically calculating (using the Shampine-Gordon-
routine [29]) the time average of the (experimentally mea-
surable [1]) population imbalance hJzi=N (which corre-
sponds to the mean-field z=2):
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where for hJzi=N � 	0:5 the entire condensate is in the
left (right) well. Each point represents an initial condition
(2). The differences are small if the mean-field dynamics
are regular [cf. Fig. 1(a)], while they can be rather large in
the chaotic regime (up to half the theoretical limit,
maxfjz=2� hJzi=Njg � 1). Most of the deviations be-
tween N-particle dynamics and mean-field dynamics in
Fig. 2(a) lie within twice the root-mean-square (rms) fluc-
tuations of the N-particle dynamics. However, contrary to
the preliminary results of Ref. [15], for many initial con-
ditions in the (classically) chaotic regime the differences
can be very small; they are large near the boundaries of
stable regions.

In Fig. 2(b), the time-averaged rms fluctuations of
hJzi=N reproduce many features displayed in the
Poincaré section in Fig. 1(a). Note that the values for the
rms fluctuations are well above those expected for N �
100 particles in an atomic coherent state, sin���=�2

����
N
p
� 


0:05, thus clearly indicating that more than one atomic
coherent state is involved. Bose-Einstein condensates of
N � 100 have been realized experimentally [30]; both the
validity of the two-mode approximation will be better and
lifetimes of mesoscopic entangled states will be longer
than in larger condensates. However, even when the cal-
culation is repeated for N � 1000 particles, the differences
in the chaotic regime remain. As the (nonlinear) Gross-
Pitaevskii equation does not allow any superpositions,
decoherence should reduce the differences between
mean-field and quantum dynamics.

In this Letter, we use a piecewise deterministic process
(PDP) (Ref. [31]; cf. [32]) to model decoherence. To avoid
to have to introduce decoherence also on the mean-field
level (the atomic coherent states (2) become orthogonal in
the limit N ! 1), we use the projection on the atomic
coherent states [24]:

 1 �
N � 1

4�

Z
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Z
d�j�;�ih�;�j: (5)

Now, the PDP simplifies to having jumps on one of the
atomic coherent states (2) after time t with probability

 pjump � 1� exp���t�; � � const: > 0 (6)

and Hamiltonian dynamics (1) between jumps. The state
on which the wave function is projected is determined by
the probability distribution

 p�;�d� �
N � 1

4�
jh j�;�ij2 sin���d�d�: (7)

Figure 3 shows that the PDP can qualitatively reproduce
the results of the Gross-Pitaevskii equation [33]. Without
introducing the decoherence, the qualitative difference
between mean-field and quantum dynamics are quite large;
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FIG. 1. Poincaré surface of section for the forced nonrigid
pendulum [the mean-field dynamics (3) are plotted for various
starting points at integer multiples of the oscillation period
2�=!]. Closed loops are characteristic for stable orbits whereas
irregular dots represent chaotic regions. For a BEC in a double
well, the parameters correspond to: (a) a tilt of 2�0=� � 3:0, a
driving frequency of ! � 3�, an interaction of N�=� � 0:8,
and a driving amplitude of 2�1=� � 0:9 (i.e., a one-photon-
resonance [26]); (b) the 3=2-photon-resonance with N�=� �
0:1, 2�0=� � 3:0, !=� � 2:08, and 2�1=� � 1:8; (c) all
parameters as in (a) except for N�=� � 0:3.

FIG. 2 (color online). Quantum dynamics (N � 100) versus
mean-field dynamics using the parameters of Fig. 1(a). (a) The
difference of the time-averaged population imbalances hJziT=N
and hz=2iT as a function of 1012 initial conditions (z0, �0) in a
two-dimensional projection of the resulting three-dimensional
plot (T � 100=�). (b) The time-averaged root-mean-square
fluctuations h�JziT=N of the population imbalance as a function
of the initial atomic coherent state (2).
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averaging over several PDPs would again result in a
smooth curve within the error bars in Fig. 3. While BEC
research in quantum chaos often assumes the validity of the
Gross-Pitaevskii equation [2–5,34], at least for the model
investigated here, only decoherence can lead to the chaotic
behavior predicted by mean field.

Furthermore, differences between quantum dynamics
and mean-field dynamics can also occur in the regular
regime: Fig. 4 shows that, at least for N � 100, the differ-
ences can even lie above the result for many initial con-
ditions in the chaotic regime [Fig. 2(a)]. One way to reduce
the differences is to average over the Husimi distribution
(7) (see Fig. 4; cf. Refs. [2,35] and references therein). This
decreases the peaks of the differences between mean-field
and quantum dynamics by a factor of 2 (in the chaotic
regime, the factor can be of the order of 5). A perfect
agreement cannot be expected as the averaged probability
distribution on the mean-field level is always added
whereas in quantum mechanics also destructive interfer-
ence can occur.

On the level of quantum dynamics, the differences could
be due to either a distribution of many atomic coherent
states—or maybe even mesoscopic superpositions. For our
model all mesoscopic quantum superpositions of all N
particles being either in one quantum state or in another
can be expressed as a sum of two atomic coherent states
[see the explanation before Eq. (2)]:

 j spi � ��j�1; �1i � ei	j�2; �2i�; 0 
 	 
 2�:

(8)

If both parts hardly overlap, jh�1; �1j�2; �2ij � 1, the
normalization � ’ 1=

���
2
p

and j spi is a highly entangled
mesoscopic state [for finite N, the only two orthogonal
atomic coherent states (2) are j0; �1i and j�;�2i]. In a
two-dimensional projection [cf. Fig. 5(c)] such a state is a
bimodal distribution (for N ! 1: two delta peaks).

To numerically identify if a given wave function j i is in
a mesoscopic superposition, we start by searching the
atomic coherent state j�1; �1i for which jh j�;�ij2

reaches its maximum, m1. Around (�1, �1) we define the
set R1 by jh�;�j�1; �1ij

2 > 10�3 [cf. Fig. 5(c)]. As both
parts of the mesoscopic superposition (8) should hardly
overlap, the second maximum m2 � jh j�2; �2ij

2 is
searched outside the set R1. The set R2 is defined analo-
gously to R1 by jh�;�j�2; �2ij

2 > 10�3. The fidelity
jh j spij

2 still is a function of 	; taking its maximum
and excluding large overlaps (R1 \ R2 � ;) yields
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Yet this only indicates entanglement if pfid > 0:5. With

 
ent �
m2

m1
pfid; 
ent 
 pfid (10)

even values of 
ent & 0:5 can identify mesoscopic super-
positions [Fig. 5(c)]. In Fig. 5(a), the maximum value of
entanglement (evaluated at � � 5 and 10) is plotted as a
function of the initial condition (z0,�0): within the chaotic
regime (left), entanglement generation happens on faster
time scales than in the regular regime (right); for longer
time scales [Fig. 5(b)] the entanglement in the entire
chaotic regime is more pronounced. It reaches particularly
high values near initial conditions with large differences in
the time-averaged population imbalances [Fig. 2(a)]. We
obtained qualitatively similar results also for other values
of driving amplitude and interaction.

To conclude, generation of mesoscopic entangled states
can be a signature of quantum chaos for a BEC in a
periodically driven double-well potential. We investigated
the driving near multiphoton tunneling resonances [26]
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FIG. 3. Time-averaged population imbalance hJziT=N for vari-
ous driving amplitudes �1 in a tilted driven double well
(2�0=� � 3:0, ! � 3�, T � 100=�). The BEC initially is in
the lower well (z0 � 1). Solid line: hJziT=N for N � 1000 is a
smooth curve as opposed to the mean-field results depicted in the
inset, which display chaotic jumps for small changes of the
driving amplitude. Dots in the main plot: if decoherence is
included via the PDP process described around Eq. (6) with on
average ’ 5 jumps (� � 1=20) [33], the behavior is closer to the
mean-field dynamics. Many dots lie in the area defined by the
curves �hJziT 	 h�JziT�=N (dashed lines).

FIG. 4 (color online). Time-averaged population imbalances
of quantum dynamics (N � 100) versus mean-field dynamics at
the 3=2 photon resonance of Fig. 1(b). (a) The difference is
plotted as a function of the initial condition (z0, �0) in a two-
dimensional projection (T � 100=�). (b) As in (a) but the mean-
field dynamics are replaced by an average over the distribution
of initial conditions (7).
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which were recently observed experimentally for a BEC in
an optical lattice [36]. While decoherence can lead to a
‘‘chaotic’’ behavior similar to the predictions of the Gross-
Pitaevskii equation, the differences between quantum dy-
namics and mean-field dynamics are due to the emergence
of mesoscopic superpositions. If the mean-field dynamics
are chaotic, the entanglement generation is accelerated and
its values are enhanced.
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FIG. 5 (color online). Entanglement (10) for parameters as in
Fig. 1(a) (left column) and as in Fig. 1(c) (right column).
(a),(b) Mesoscopic quantum superpositions were identified at
times � � 5; 10; 15; . . . ; the maximum value of 
ent is displayed
for 1012 initial conditions (z0, �0) and for (a) short times (� �
10) and (b) longer times (� � 100). (c) Projection of two
characteristic entangled states (with maxima m1, m2) on the
atomic coherent states (2). Black (gray or red) regions:
jh�;�j ij2 > 0:16 (> 0:05). Left: z0 � �0:6, �0 �
�2:764601535, � � 80, 
ent ’ 72:3%. Right: z0 � �0:98,
�0 � �2:701769682, � � 75, 
ent ’ 33:5%. In the left plot,
the large blue or gray circle is a typical set R around j~�; ~�i
with jh�;�j~�; ~�ij2 > 0:001 [cf. Eq. (9)].
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