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We report on the observation of many-body spin dynamics of interacting, one-dimensional (1D)
ultracold bosonic gases with two spin states. By controlling the nonlinear atomic interactions close to a
Feshbach resonance we are able to induce a phase diffusive many-body spin dynamics of the relative
phase between the two components. We monitor this dynamical evolution by Ramsey interferometry,
supplemented by a novel, many-body echo technique, which unveils the role of quantum fluctuations in
1D. We find that the time evolution of the system is well described by a Luttinger liquid initially prepared
in a multimode squeezed state. Our approach allows us to probe the nonequilibrium evolution of one-

dimensional many-body quantum systems.
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Among the applications of ultracold atomic gases, atom
interferometry stands out due to its potential for high
precision measurements [1]. In atom interferometry, the
physical quantity of interest is measured in terms of the
relative phase accumulated by the atomic wave function,
subsequently mapped onto atomic populations for efficient
readout. Because of their intrinsic phase coherence and the
possibility to create nonclassical spin states for precision
metrology, Bose-Einstein condensates (BEC) seem ideal
candidates for such experiments. However, interatomic
interactions mitigate this conclusion. For a two-component
interacting BEC, it has been shown [2,3] using a single-
mode approximation (SMA) that the relative phase be-
tween the two components undergoes a complicated evo-
lution [Figs. 1(c)—1(e)], creating quantum correlations [4]
while single-particle coherence is suppressed. Therefore,
this dynamics is often termed phase diffusion.

Here, we investigate such an interaction-induced dy-
namics in quasi-1D two-component quantum gases by
monitoring the loss of coherence in a Ramsey-type inter-
ferometer sequence. In order to distinguish different con-
tributions affecting the coherence through the spin or
spatial wave functions, we employ a novel many-body
spin echo sequence using a Feshbach resonance to adjust
sign and magnitude of the atomic interactions. When ap-
plied to a single spatial mode BEC, this spin echo would
lead to full revivals of coherence, which are not observed in
our experiment. In contrast, quantum fluctuations play a
key role for 1D interacting systems [5,6], which must
necessarily be described as multimode quantum gases, as
during the dynamical evolution higher energy modes be-
come populated [7]. The Luttinger liquid (LL) formalism
[8,9], which reduces the interacting problem to an effective
low-energy model of decoupled harmonic oscillator
modes, provides such a description. We show theoretically
that our preparation sequence amounts to producing a
multimode-squeezed state in the spin excitation modes of
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the LL oscillators, with each oscillator itself prepared in a
well-defined mode-squeezed state, and remaining in a
squeezed state at all times. Monitoring the phase dynamics
of this strongly nonequilibrium state allows one to probe
fundamental aspects of 1D physics, namely, the competing
dynamics of the (quasi-)condensate fraction (zero momen-
tum mode) and of the low-energy excitations, highly rele-
vant for squeezing experiments in 1D configurations [10].
From our model we find that only the lowest oscillator
mode shows the familiar revival dynamics, whereas the full
model leads to the partial revivals that we observe
experimentally.

We consider a ’Rb BEC of around 2.8 X 10° atoms
loaded into a 2D-optical lattice (laser wavelength 843 nm),
creating a 2D array of 1D degenerate quantum gases [see
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FIG. 1 (color online). (a) Array of quasi-1D spinor systems.
(b),(c) Coherent spin state exhibiting Gaussian distributed fluc-
tuations of the mean spin. (c)—(e) Time evolution of the initial
CSS under nonlinear interactions redistributing the initial
Gaussian fluctuations towards increased phase fluctuations.
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Fig. 1(a)]. Within each of the tubelike traps the radial and
axial trap frequencies are w, = 27 X 42 kHz and w,, =
27 X 90 Hz, respectively, from which we calculate a mean
atom number per tube of N = 60.

In order to extract information about the phase dynam-
ics, we monitor the coherence of the system in a Ramsey-
type interferometer. Starting from a spin-polarized en-
semble in state ||) = |F = 1, mp = +1), we use a two-
photon 77/2 pulse combining a microwave and a radio
frequency photon to couple this state to the |T) = |2, —1)
state and bring each atom into the single-particle superpo-
sition (|1) + |1))/+/2. This prepares a coherent spin state
(CSS) within each tube with expectation value of the
magnetization (/i1,) = 0 and variance (M2) = N/2, with
m, = iy — Ay [see Fig. 1(b); cf. [11]]. In order to observe
interaction driven effects, we let the system
evolve for a given time at a particular value of the inter-
spin-state interaction strength, selected by using a
Feshbach resonance around B = 9.12 G. Thereby the in-
terspecies scattering length ay can be changed by a few
10% from its background value [12], where a;; is the
s-wave scattering length for collisions between atoms in
spin states i and j.

After this time evolution, a final 77/2 pulse with phase 6
relative to the first pulse is applied, mapping the final
relative phase onto populations of spin states |1) and |[)
that are readout using state-selective absorption imaging.
In the absence of interactions and dephasing, such a se-
quence results in sinusoidal Ramsey fringes in the relative
population N;/N,, as a function of #. Experimentally the
coherence is quantified through the visibility of the
Ramsey fringe Ni/Nyy = %[1+ V(r)cos(6)], which is
used to fit the experimental data and extract V(¢) for a
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FIG. 2 (color online). Ramsey fringe contrast drop for a time
evolution at B =9.106 G (O) and B=9.131 G (@®). The
dashed line indicates the independently measured decoherence
far away from resonance (#4. = 54 ms). The solid lines are
predictions of our LL model with the phase width (A¢;;)? =
(A¢g)? = 0.033 fixed. The dash-dotted line is a prediction of
Eq. (2) based on SMA. For values see text.

specific interaction time. Far from the Feshbach resonance
(B = 8.7 G), where phase diffusion can be neglected, we
measure a e '-decay time fy4. = 54 ms, which can be
attributed to residual single-particle decoherence effects,
e.g., caused by magnetic field fluctuations.

Close to the Feshbach resonance, however, we find a
markedly faster decay of the Ramsey contrast. In Fig. 2 we
monitor such a behavior of the Ramsey fringe over time for
two magnetic fields located almost symmetrically around
the center of the Feshbach resonance. This can be expected
from enhanced phase diffusion due to increased interac-
tions near the resonance. Phase diffusion results from a
spread in the distribution of populations that are converted
into phase fluctuations by the nonlinear interactions during
the evolution; see Figs. 1(c)—1(e). In the simplest case
where all atoms occupy the same orbital wave function,
the Ramsey fringe contrast decays according to

1
V suialt) = exp(— 5x2<n%§>t2>. ®)

For the initial state we prepare, the population variance
(m?) = N/2 leads to a phase uncertainty (Agg)> =
2/N = 0.033 of the collective spin vector in the equatorial
plane (see Fig. 1) in each tube, and a phase spreading time
scale 14 ~ 1/( X~/N). The parameter Y, related to the sec-
ond derivative of the chemical potential [3], is directly
proportional to the difference a; = (ay + ay — 2ay)/2.
Far from the resonance, all three scattering lengths ay,
ay, and ay are approximately equal, so that y = 0 and
phase spreading can be neglected. However, near the
Feshbach resonance, the change of interspecies scattering
length can lead to a significant nonlinear interaction en-
ergy. Following Refs. [3,13,14], we estimate y = 27 X
4.6 Hz for B = 9.131 G and our trapping parameters with
an atom number of N = 60. Although this value, together
with the observed decoherence rate, is roughly on the order
of the observed rate at which the coherence is lost in our
case, the pure SMA Eq. (2) cannot explain our experimen-
tal observation in Fig. 2. Close to the resonance we lose up
to 50% of the atoms due to inelastic collisions. However, as
these collisions usually remove atoms from both spin states
symmetrically, they do not modify the magnetization of the
system and thus only weakly influence the dynamical
evolution of the coherence for our measurement times [3].

In contrast to the simple model of Eq. (2), which predicts
a symmetric decay around the resonance, we systemati-
cally observe a faster drop of contrast below the resonance.
This results from dynamics of the spatial wave function.
Below resonance, the interspecies repulsion is stronger
than the intraspecies repulsion (y < 0), and the system
becomes dynamically unstable towards demixing of the
two species. This reduces the Ramsey fringes’ visibility
below the resonance, which cannot be distinguished from
the effect of the coherent phase diffusion dynamics.

In order to separate the effects of phase diffusion from
other mechanisms reducing the Ramsey fringe contrast, we
apply a many-body spin echo operation after an initial
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evolution time 7', similar to the one used in cavity quantum
electrodynamics experiments [15]. We stress that our echo
technique is acting on the many-body quantum state,
thereby extending previous theoretical work on echo op-
erations neglecting phase diffusion [16]. Our echo opera-
tion is performed by first holding the sample for a time
T = 6 ms at a magnetic field B; = 9.131 G above the
Feshbach resonance (y > 0), and subsequently jumping
below the resonance (y << 0). This operation effectively
changes the sign of y, while heating or atom loss can be
avoided [11]. In a SMA one would expect this sequence to
correspond to a perfect time reversal, leading to a full
revival of the contrast after another interaction time 7 ac-
cording to Vgya() = Vyexp[— X{(m;)(; — 27T)*]. This
contradicts our observation of only partial revivals, shown
for two spin echo sequences in Fig. 3.

In order to explain our observation, we model our sys-
tem in a LL approach going beyond the usual SMA [2,7]. A
drastic simplification follows from the near equality a) =
ay, which results in a decoupling of elementary excitations
into almost independent density and spin fluctuations. The
latter can be described in terms of two conjugate fields, 7,
and ¢,, describing, respectively, fluctuations of the local
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FIG. 3 (color online). Ramsey fringe visibility versus time for
holding above the Feshbach resonance, B = 9.131 G (O), and
with time reversal (spin echo) after 6.7 ms (@) jumping from
B=09.131G to (a) B=9.101 G and (b) B =19.090 G. The
solid and dashed lines are calculations from our model with
(Ap1)> =004 (a) and (A¢y;)*> =0.025 (b). For B=
9.131 G, a; = 0.17ay;, and we compute y = 0.165 and K = 8.0.

magnetization and of the relative phase. At long wave-
lengths, the spin part of the Hamiltonian reads

Ho= [a ez + M we P @

with n,, = ny + n; the linear density. For a uniform 1D sys-
tem of length L, the fields 7z, and $S can be expanded in
terms of momentum eigenmodes a,, &; as [8,9] qgs(x) =
¢o + X,(2qLK/m) V2 102 sgn(g)[eie*a, + H.c.].
Each mode is characterized by the wave vector ¢g and fre-
quency w, (1) = v,(1)lgl, where v, (1) = [g,(D)no,/M]"* is
the spin velocity and g,(¢) denotes the spin coupling con-
stant. The sum over LL. modes exclude the zero mode and
are restricted to values of ¢ below a cutoff momentum ¢, ~
5;1, where &, is the healing length. The interactions are
encoded in the LL parameter K, which can take values
ranging from 1 (the so-called Tonks-Girardeau limit [14])
to infinity (noninteracting gas). For weakly interacting
bosons [9] K =~ 7/[¥(1 — /¥/2m)'/?] where y=
2a;Mw,/hn.,. In our experiments [12] y ~ 0.1-0.2 and
K ~ 5-8 for different data sets. The contribution of the
zero energy mode ¢ is identical to that in the SMA, as
described before [2]. The dynamics of the low-energy LL
excitations on top of the zero mode dynamics is that of a
collection of independent harmonic oscillators with (time-
dependent) frequencies .

In order to use the LL. decomposition to compute the
time evolution, we need to identify how to describe the
initial state in terms of those LL modes. Our experimental
scheme ideally corresponds to an instantaneous projection
of the spin state (initially polarized in | |)) onto a state with
zero relative phase directly after the first 77/2 pulse,
&, (x)|¥(0)) = 0. The connection with the LL formalism
is done by identifying the initial CSS as a multimode
squeezed state for the elementary spin excitations,

(0)) = [T/(1 = Iw, Py exp(w,alat ploy,  (5)
q
Here, a, =

where w, = (1—a,)/(1+a,). q
Adilql/lg.] is a mode-squeezing parameter, and the
phase variance (A¢yr)? = (A¢hp)? = 3. Because of ex-
perimental imperfections (e.g., unknown temperature), the
exact width of the prepared squeezed state is unknown and
cannot be determined independently. We still consider the
initial state as a squeezed state of the LL oscillators, with a
fitted A¢LL'

The time evolution of a squeezed state under the LL
Hamiltonian amounts to the replacement a,—
a,exp(—iw,t). In addition, the reversal of the sign of
interaction at time ¢t = 7 amounts to a sign reversal of
the spring constant of each LL harmonic oscillator. We
are able to compute this time evolution exactly [11], using
the formalism of harmonic oscillators with time-dependent
frequencies w, (7). Here, we concentrate on the comparison
between the predictions of the calculations and the experi-
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mental results. From our model we are able to calculate the
coherence factor V(1) =Re{t [5dx(ip(r)|e'®s|y(1))}, mea-
suring the relative phase ¢, between |1) and |]). The LL
formalism allows us to write V = VSMA(I)'VW&O(t),
where Vgya is given by Eq. (2) and the term describing
the contribution of the ¢ # 0 modes to the decay of con-
trast Vq#)(t) is known explicitly [11]. The combination of
these effects leads to the typical behavior of V(z) illus-
trated in Fig. 3 where we quantitatively compare the ex-
perimental results with the predictions of our LL. model.
The interaction parameters of the LL model were deter-
mined from the microscopic data [12], and in our compu-
tations we only consider the density in the central tubes
computed in the Thomas-Fermi approximation. Overall,
we find very good agreement between the LL model and
the experimental data using A ¢ ;. as the only fit parameter
with values of the same order of magnitude as the initial
width. For longer times (# > 20 ms), the model deviates
from the measured data. This breakdown is due to the
phenomenon of demixing discussed above, when the ex-
citations become so strong that density fluctuations are
significant [6]. Its time scale can be estimated as the time
required for the formation of random magnetization do-
mains, when Zq<|ﬁ1q|2) ~ N. For our experimental pa-
rameters, it is of the order 1/y ~ 25 ms.

From this analysis we find indeed that although the zero
mode evolution is perfectly refocused by changing the sign
of g,, the nonzero modes still undergo dephasing even
under the echo sequence. The reason for this is the kinetic
energy term in Eq. (4), unaffected by the spin echo. Hence,
the reversal is exact for the ¢ = 0 mode, significant for
low-lying spin waves with ¢ ~ 1/L, but increasingly less
efficient for higher lying spin wave modes with L™! <«
q < q.. Note that a full revival could in principle be
achieved by also reverting the second, kinetic energy
term of the Hamiltonian in Eq. (4). This could be realized
by inducing a negative effective mass, e.g., through a weak
optical lattice along the direction of the tubes [17].

In conclusion, we have studied the spin dynamics of
quasi-1D two-component quantum gases with adjustable
interaction. For strong interactions we observe an acceler-
ated decay of coherence in the system. By application of a
novel many-body spin echo technique, we are able to
reverse the interaction driven dynamics, leading to a partial
revival of the coherence in the system. We attribute this
revival to the dynamics of the ground state mode, reflecting
the coherent nature of the phase diffusion dynamics. This is
supported by quantitative comparison to our LL model.
The missing fraction of coherence in the revival is also
quantitatively in agreement with our model and demon-
strates the importance of the dynamical evolution of higher
lying modes in 1D systems. Our experiment shows that
quantum fluctuations are a crucial component in the dis-
cussion of phase diffusion dynamics [2] and spin squeezing
[4,10] in low dimensional systems. While our work dem-

onstrates that these quantum fluctuations fundamentally
limit the performance of atom interferometers in 1D, it
also indicates an avenue to overcome such limitations by
inverting both interaction and kinetic energy terms simul-
taneously during the interferometer sequence.
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