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Urban street patterns form planar networks whose empirical properties cannot be accounted for by
simple models such as regular grids or Voronoi tesselations. Striking statistical regularities across different
cities have been recently empirically found, suggesting that a general and detail-independent mechanism
may be in action. We propose a simple model based on a local optimization process combined with ideas
previously proposed in studies of leaf pattern formation. The statistical properties of this model are in
good agreement with the observed empirical patterns. Our results thus suggest that in the absence of a
global design strategy, the evolution of many different transportation networks indeed follows a simple
universal mechanism.
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Transportation networks—structures that convey en-
ergy or matter from one point to another—appear in a
variety of different fields, including city streets [1,2], plant
leaves [3], river networks [4], mammalian circulatory sys-
tems [5], networks for commodities delivery [6], and tech-
nological networks [7]. The recent availability of massive
data sets has opened the possibility for quantitative analy-
sis and modeling of these patterns, and we focus here on
the urban street network. Despite the peculiar geographi-
cal, historical, and social-economical mechanisms that
have shaped distinct urban areas in different ways (see,
for example, [8] and references therein), recent empirical
studies [1,9–15] have shown that, at least at a coarse-
grained level, unexpected quantitative similarities exist.
The simplest description of the street network consists of
a graph whose links represent roads and whose vertices
represent road intersections and end points. For these
graphs, links intersect essentially only at vertices and are
thus planar. Although the importance of networks in geog-
raphy and urban modeling has been recognized for a long
time [16], comparably less attention has been devoted to
generative models for planar graphs in the recent literature
on complex networks [17]. Our aim is to propose a simple
model for planar graph generation, based on plausible
physical assumptions, which reproduces several empirical
findings. In the first part of this Letter we discuss the
empirical and quantitative signatures that characterize the
topology of street patterns and which suggest the possibil-
ity of identifying some general driving force steering the
formation and evolution of street patterns. In the second
part, we propose and discuss a simple and parameter-free
model based on a principle of local optimality that quanti-
tatively reproduces the above mentioned empirical fea-
tures. The application of optimality principles to both
natural and artificial transportation networks has a long
tradition [18] and in most cases requires the minimization

of a global cost function (such as the average total time, for
example), in sharp contrast to the model presented here.
The rationale to invoke a local optimality principle in this
context is that every new road is built to connect a new
location to the existing road network in the most efficient
way [19]. The locality of the rule is implemented both in
time and space during the evolution and formation of the
street network, in order to reflect evolution histories that
greatly exceed the time horizon of planners. The self-
organized pattern of streets emerges as a consequence of
the interplay of the geometrical disorder and the local rules
of optimality.

In [1,2] measurements for different cities in the world
are reported. Based on the data from these sources, we plot
in Fig. 1 the number of roads E (edges) versus the number
of intersections N. The plot is consistent with a linear fit
with slope � 1:44. When individual data points are con-
sidered, the quantity e � E=N � hki=2 (hki is the average
degree of a node) shows a range of values 1:05< e< 1:69,
in between the values e � 1 and e � 2 that characterize
treelike structures and 2D regular lattices, respectively.
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FIG. 1 (color online). (a) Number of roads versus the number
of nodes (i.e., intersections and centers) for data from [1]
(circles) and from [2] (squares). In the inset, we show a zoom
for a small number of nodes. (b) Total length versus the number
of nodes. The line is a fit which predicts growth as
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N
p

(data
from [1]).
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These values are however not very indicative: planarity
imposes severe constraints on the degree of a node and on
its distribution, which is generally peaked around its aver-
age value. Few exact values and bounds are available for
the average degree of classical models of planar graphs. In
general it is known that e � 3, while it has been recently
shown [20] that e > 13=7 for planar Erdös-Renyi graphs
[20]. In Fig. 1(b), we plot the total length ‘ of the network
versus N for the towns considered in [1]. Data are well
fitted by a power function of the form �N� with � � 1:51
and � � 0:49. The simplest hypothesis consistent with the
data, at this stage, is that of a homogeneous and transla-
tional invariant structure. Indeed, a simple scaling argu-
ment that could apply to a large family of planar graphs,
including regular lattices, suggests that the typical distance
‘1 between connected nodes scales as ‘1 �

1
���

�
p , where � �

N=L2 is the density of vertices and L the linear dimension
of the ambient space. This implies for the total length ‘�

E‘1 �
hki
2 L

����

N
p

. The discrepancies between the measured
hki and �, given the error bars, are therefore not enough to
reject the hypothesis of an almost regular lattice. However,
the network of roads naturally produces a set of nonover-
lapping cells, encircled by the roads themselves and cover-
ing the embedding plane, and surprisingly, the distribution
of the area A of such cells measured for the city of Dresden
in Germany [15] has the form P�A� � A�� with � ’ 1:9.
This is in sharp contrast with the simple picture of an
almost regular lattice which would predict a distribution
P�A� very peaked around ‘2

1. The authors of [15] also
measured the distribution of the form factor � �
4A=��D2� (the ratio of the area of the cell to the area of
the circumscribed circle), and found that most cells have a
form factor between 0.3 and 0.6, suggesting a large variety
of cell shapes, in contradiction with the assumption of an
almost regular lattice. These facts thus call for a model
radically different from simple models of regular or per-
turbed lattices. In the following, we describe a model
where the set of ‘‘centers’’ (representing new homes, busi-
nesses, etc.) and the network of roads that connects them
grow simultaneously. New centers are introduced every
�C > 1 time steps, and for the purpose of the present study
we simply assume that the location of new points is given
exogenously and we first assume them to be randomly and
uniformly located over a square of given size. Finite seg-
ments (of fixed and small length) of roads are simulta-
neously added to the existing network every �R � 1< �C
in order to account for the limited time horizon of planners.
The algorithm that drives the construction of new portions
of roads is based on a local optimality principle and aims at
connecting to the network the still unconnected centers
using as little as possible road length.

In order to explain the algorithm, we illustrate it in the
simple example of Fig. 2. We assume that at a given stage
of the evolution, two centers A and B still need to be
connected to the network. At any time step, each center
can trigger the construction of a single new portion of road

of fixed (small) length. In order to maximally reduce their
distance to the network, both A and B would select the
closest pointsM1 and M2 in the network as initial points of
the new portions of roads to be built. If M1 and M2 are
distinct, segments of roads are added along the straight
lines M1A and M2B. If M1 � M2 � M, it is not economi-
cally reasonable to build two different segments of roads
and in this case only one single portion MM0 of road is
allowed. Our main assumption is that the best choice is to
build it in order to maximize the reduction of the cumula-
tive distance from the network (M) to A and B,

 � � �d�M;A� 	 d�M;B�
 � �d�M0; A� 	 d�M0; B�
: (1)

The maximization of � is done under the constraint
jMM0j � const� 1, and a simple calculation leads to

 MM
���! 0 / ~uA 	 ~uB; (2)

where ~uA and ~uB are the unit vectors from M in the
direction of A and B, respectively. The rule (2) can easily
be extended to the situation where more than two centers
want to connect to the same pointM. Already in this simple
setting nontrivial geometrical features appear. In the ex-
ample of Fig. 2 the road from M will develop a bent shape
until it reaches the line AB and intersects it perpendicularly
as is commonly observed in most urban settings. At the
intersection point, a singularity occurs with ~uA 	 ~uB � 0,
and one is then forced to grow two independent roads from
the intersection to A and B. The above procedure is iterated
until all centers are connected. Interestingly, although the
minimum expenditure principle was not used, the rule
equation (2) was proposed by Runions et al. [3] in a study
about leaf venation patterns, and we can follow their
implementation. In particular, the growth scheme de-
scribed so far leads to treelike structures, and we imple-
ment ideas proposed in [3] in order to create networks with
loops. Indeed, even if treelike structures are on one side
economical, on the other hand, they are hardly efficient (for
example the path length along a minimum spanning tree
scales as a power 5=4 of the Euclidean distance between
the end points [21]) and better accessibility is granted if
loops are present. Following [3], we assume that a new
center can trigger the construction of more than one portion
of road per time step. An unconnected center s ‘‘stimu-
lates’’ the addition of new portions of roads from any

FIG. 2 (color online). M is the closest network point to both
centers A and B. The road will grow to point M0 in order to
maximally reduce the cumulative distance � of A and B from the
network.
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vertex v of the road network (vertices correspond to any
end points of the previously introduced road segments) that
is in its relative neighborhood [22]. A node v belongs to the
relative neighborhood of s if for any node u (center or
vertex of the road network) the inequality d�v; s�<
max�d�s; u�; d�u; v�� holds [23], which captures the loosely
defined requirement that v belongs to the relative neigh-
borhood of s if the region between s and v is empty.
Centers can therefore be reached by more than one road,
leading to the formation of loops. When more than one
center stimulates the same point the prescription of Eq. (2)
is applied, and the evolution ends when the list of stimu-
lated points is exhausted.

The final road network is achieved starting from a small
set of n0 centers connected by roads and iterating the
following two steps: (i) at every time multiple of �C we
add n new centers whose locations r are chosen randomly
according to a given distribution P�r�; (ii) the road network
grows according to the algorithm described above. When a
center is reached by all the roads it activated, it becomes

‘‘inactive’’ and cannot stimulate the growth of a road any
longer. We repeat (i)–(ii) until the total number of centers
reaches a desired value. Although it is clear that the focus
of the present Letter is on the road network growth, it is
important to stress that our model relies on a number of
simplifying assumptions, the most relevant of which is the
fact that the centers are independently located one from the
other and from the structure of the road network. In fact,
strong evidence [11,24] suggests that this is not the case,
and integrating the correlations between the centers and the
network is the next most important step [25]. Despite this
limitation, the model produces realistic results, in good
agreement with empirical data (discussed below) which
demonstrates that even in the absence of a well-defined
blueprint, nontrivial global properties emerge. In Fig. 3
example of patterns obtained for a spatially uniform dis-
tribution of new centers are shown for different times. As
time progresses, density increases, and the typical length
from a center to the existing road network shortens and
scales as ‘1 � 1=

����

�
p
� 1=

��

t
p

as observed in the simula-
tions. Beyond visual similarities with real cities, the ratio
e � E=N has initially a value around 1 (corresponding to a
treelike network) and increases very fast with N reaching a
value around e � 1:3, which is not far from the empirical
finding (here and in the following, we checked that the
results were robust for different values of the growth rate
n=�C). Consistently, in Fig. 4(a) we observe a relationship
between the total length and N that is well approximated
by a function of the form a

����

N
p

with a � 1:90, again in
reasonable agreement with the empirical data. Panels (b),
(c), and (d) of Fig. 4 show the collapse for different values
of N of the distributions of �, the perimeter p of the cells,
and A, respectively. The excellent collapses show that the
structures obtained are consistent with the hypothesis of
homogeneity and translational invariance formulated
above. We also note that the distribution of the � factor
is peaked around 0.6 and essentially supported in the
interval 0:4<�< 0:7, in very good agreement with facts
reported earlier [15]. A simple spatial uniform disorder and
a plausible mechanism that connects the centers to the
network can thus explain the nontrivial form of the �
factor distribution, but predicts an exponential behavior
for the area distribution [Fig. 4(d)], in disagreement with
empirical observations [15]. In real cases however, the
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FIG. 3. Snapshots of the network at different times of its
evolution: (a) t � 100, (b) t � 500, (c) t � 2000, (d) t � 4000
(the growth rate is here � � 0:1). At short times, we have almost
a tree structure and loops appear for larger density values
obtained at larger times (the number of loops then increases
linearly with time).
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FIG. 4 (color online). Simulation results (averaged over 1000 configurations). (a) Total length of roads versus the number of nodes.
The dotted line is a square root fit. (b) Structure factor distribution showing good agreement with the empirical results of [15]. (c)–
(d) Rescaled distributions of the perimeter (c) and of the areas (d) of the cells displaying an exponential behavior.
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density of centers is not uniform. We therefore relax this
assumption and assume, as supported by a previous em-
pirical study [10], that the centers’ distribution follows the
population density and decreases as P�r� � exp��jrj=rc�,
where r is the distance from the central business district
and 1=rc the population density gradient. Although most
quantities (such as hki and ‘) are not sensitive to the
centers’ distribution, the impact on the area distribution
is drastic. Indeed, as shown in Fig. 5, we observe a power
law decay with an exponent equal to 1:9� 0:05 in remark-
able agreement with the empirical result of [15] for the
road network of the city of Dresden. This agreement con-
firms that the simple local optimization is a good candidate
for the main process driving the evolution of city street
patterns but also shows that the center spatial distribution
P�r� is crucial.

More than 50% of the world population lives in cities
today, and this figure is bound to increase [26]. This
migration effect has dictated a fast and short-term planned
urban growth which needs to be understood and modeled in
terms of socio-geographical contingencies and of the gen-
eral forces that drive the development of cities. Previous
studies of urban morphology have mostly tried to identify
specific mechanisms that have shaped distinct urban areas
in different ways. Here we studied a simple model based on
the assumption that road networks develop trying to grant,
in an efficient and at the same time economic way, con-
nections to a set of ‘‘centers.’’ The model accounts quanti-
tatively for a list of descriptors that characterize the
topology of street patterns, and in a more qualitative way
for the tendency to have bent roads—even in the absence
of geographical obstacles—and perpendicular intersec-
tions. Interestingly, the optimality principle applied here
turns out to be general and was implicitly at the basis of a
model previously investigated [3] to explain the formation
of veins’ patterns in leaves, pointing to an unexpected
generality of the principle in the formation of transporta-
tion systems. This model is simple enough to allow many

interesting generalizations. In particular, our results thus
suggest that the local optimality principle is a key ingre-
dient for a more general model describing the coevolution
of the center distribution and the network [25].
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FIG. 5 (color online). (a) Network obtained for an exponential
distribution of centers (1000 centers and rc � 0:1). (b) In this
case, the area distribution is a power law (obtained for 5000
centers and 100 configurations). The solid line is a power law fit
with an exponent � 1:9 (for this size and with a smaller number
of configurations, we observe fluctuations of this exponent of the
order of 10%).
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