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We present a theory of low-frequency Raman scattering in glasses, based on the concept that light
couples to the elastic strains via spatially fluctuating elasto-optic (Pockels) constants. We show that the
Raman intensity is not proportional to the vibrational density of states (as was widely believed), but to a
convolution of Pockels constant correlation functions with the dynamic strain susceptibilities of the glass.
Using the dynamic susceptibilities of a system with fluctuating elastic constants we are able for the first
time to describe the Raman intensity and the anomalous vibration spectrum of a glass on the same footing.
Good agreement between the theory and experiment for the Raman spectrum, the density of states, and the
specific heat is demonstrated at the example of glassy As2S3.
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Raman scattering is an indispensable tool for investigat-
ing the structure and dynamics of solids [1,2]. In crystalline
materials Raman scattering mainly probes optical phonons,
from which structural information can be extracted. In
disordered solids a continuous band of excitations in the
range of 10 to 100 wave numbers is observed, which is
absent in single crystals, in which sharp lines of specific
Raman-active optical modes are observed. The appearance
of the continuous band in disordered solids, especially
glasses, is obviously due to the breakdown of the crystal
symmetries, which, for example, does not allow for a
distinction between acoustic and optical modes in the
low-frequency domain [3]. This spectroscopic peculiarity
of disordered solids has been the object of a large number
of investigations in the last three decades [4–9]. It is
related to similar features in far-infrared absorption
[10,11] and has proven recently to lead to important appli-
cations for optical amplifiers [12].

In spite of the large number of low-frequency Raman
data the theoretical description of the spectra, especially
their relationship to the experimentally measurable vibra-
tional density of states (DOS) g�!�, remains an open ques-
tion until today. According to an early treatment of this
problem the Raman intensity I�!� is related to g�!� via
[13]

 I�!� � C�n�!� � 1�
g�!�
!

(1)

where n�!� � �expf@!=kBTg � 1��1 is the mean boson
occupation number. Equation (1) was derived assuming
that the light couples to the displacements of spatially
uncorrelated harmonic vibrations and a breakdown of the
selection rules due to the disorder. For incoherent inelastic
neutron scattering a relation for the intensity similar to (1)
holds. However, the observed g�!� differ in shape from the
Raman spectra, divided by �n�!� � 1�=!, in all known
cases. In order to be able to use an expression similar to (1)
one introduced a phenomenological frequency dependent
coupling coefficient C! C�!�, which is essentially the
Raman susceptibility I�!�=�n�!� � 1�, divided by the

level density g�!2� � g�!�=2! [5]. Considerable effort
has been invested in determining C�!� from simulations
[5] and from comparing Raman with inelastic scattering or
specific heat data [6].

However, except for the numerical simulations for frac-
tal networks [5] there exists no theory in the literature,
which allows for calculating both the Raman intensity and
the density of states leading to a realistic frequency depen-
dence ofC�!�. Two theories for I�!�, which appeared after
Ref. [13], do not satisfactorily address this issue. The first
one, due to Martin and Brenig (MB) [14], does not give a
relation between I�!� and g�!� as it is based on a model
with fluctuating elasto-optic constants combined with
Debye-like acoustic waves. Moreover the theory does not
agree with experiments [8]. The second [15] is based on the
soft-potential model [16]. It is assumed that the amplitudes
of quasilocal modes couple to the light. This leads to a
formula like (1). However, this theory predicts a
frequency-independent depolarization ratio, which is in
disagreement with experiment [9].

A relationship between the Raman intensity and the
vibrational DOS is highly desired because near the peak
of the Raman intensity an anomalous enhancement of the
DOS over Debye’s !2 law is observed, which shows up as
a peak in the reduced DOS g�!�=!2. This feature has
attracted enormous attention in the literature [17]. Both
peaks have been called ‘‘boson peak’’ (BP) but their shape
and position differ. The temperature dependent specific
heat C�T�=T3 exhibits a peak around �10 K in many
glassy materials [21], which can be traced as well to a
BP in g�!�=!2 and is therefore also called boson peak. In
this temperature regime the thermal conductivity has a
characteristic plateau or dip [22], which can be shown to
be related to the BP of g�!� [23].

Explanations of the boson-peak anomaly [17] include
theories based on the soft-potential model [16] and on the
model of fluctuating elastic constants [23–26]. All these
studies revealed that the BP marks the lower frequency
boundary of a band of irregular states produced by the
frozen-in disorder, which hybridize with the Debye pho-
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nons. These states can either be quasilocal defect modes
[16,25] or random-matrix type states [23–26].

In the present Letter we develop a new theory of Raman
scattering in disordered solids. It is based on the assump-
tion that due to the frozen-in disorder the elasto-optic
(Pockels) constants fluctuate in space. The result of our
theory is that the Raman intensity can be represented as a
weighted sum over the imaginary parts of the longitudinal
and transverse dynamic susceptibilities. The weight func-
tions are the appropriate spatial correlation functions of the
Pockels constants. This establishes a relationship between
the anomalous vibrational spectrum of the solid and the
Raman intensity. By this we present for the first time a
theoretically founded tool for comparing Raman with in-
elastic neutron and x-ray spectra. We demonstrate this for
the example of glassy As2S3 using a fluctuating-elastic
constant model [23,26] for the boson-peak anomaly.

We start with the usual expression for the Raman inten-
sity [1,2]
 

Iij�q;!�/
Z
d3r

Z
dtei�qr�!t�h��ij�r�r0;t� t0�

	��ij�r0;t0�i; (2)

where i and j denote the Cartesian directions (x 
 H, y 

V) of the polarization vectors of the incoming and scattered
light, respectively, and ��ij�r; t� denotes the local fluctua-
tions of the dielectric tensor. The latter couples to the
vibrational degrees of freedom via the strain tensor uij �
�1=2��@iuj � @jui� as ��ij�r; t� � a1�r�

P
‘u‘‘�r; t��ij �

a2�r�vij�r; t� with vij � uij � �1=3��ij
P
‘u‘‘ [27]. a1;2�r�

are the local elasto-optic (Pockels) constants. These
quantities are now assumed [14] to have disorder-induced
fluctuations a1;2�r� � a�0�1;2 � �a1;2�r� with correlation
functionsC1;2�r� � h�a1;2�r0 � r��a1;2�r0�i. The constant
terms a�0�1;2 produce the usual formulae for Brillouin scat-
tering and Raman scattering from high-frequency optical
modes [3]. From the fluctuating terms we obtain a new
disorder-induced low-frequency contribution, in which we
set Iij�q; !� � Iij�q � 0; !� 
 Iij�!�, and obtain [28]

 

IVH�!�
n�!��1

��
Z �dk

2�

�
3 1

30
C2�k��2�00L�k;!��3�00T�k;!��;

(3)

 

IVV�!�
n�!��1

��
Z �dk

2�

�
3
�
C1�k��00L�k;!��

2

45
C2�k�

	�2�00L�k;!��3�00T�k;!��
�
; (4)

where � is a proportionality constant which involves the
incident intensity, divided by the 4th power of the wave-
length of the scattered light [1,28]. Here �00L;T are the
imaginary parts of the longitudinal and transverse dynamic
strain susceptibilities. �n�!� � 1��00L�k; !� is proportional
to the coherent inelastic neutron and x-ray scattering law
S�k; !� [26]. We now assume for simplicity that the k

dependence of the correlation functions C1;2�k� is the
same, i.e., C1;2�k� � f1;2

~C�k� with f1;2 � C1;2�r � 0� /

h�a2
1;2i and �1=8�3�

R
d3k ~C�k� � ~C�r � 0� � 1, and we

define ~�L;T�!� � �1=8�3�
R
d3k ~C�k��L;T�k; !�. We ob-

tain

 IVH�!� �
1

30
�f2�n�!� � 1��2~�00L�!� � 3~�00T�!�� (5)

 IVV�!� � �f1�n�!� � 1�~�00L�!� �
4
3IVH�!�; (6)

from which we get the depolarization ratio

 ��!��
IVH�!�
IVV�!�

�

�
4

3
�15

f1

f2

1

1� 3
2 ~�00T�!�=~�00L�!�

�
�1
: (7)

The value and the spectral shape of ��!� is controlled by
the ratio of the mean-square fluctuations of the longitudinal
and transverse Pockels constants and the ratio of the two
susceptibilities.

If one would take the dynamic susceptibilities of Debye-
type plane waves �00L;T;0�k;!� /

k
v2
L;T
��k� !

vL;T
� (vL;T �

longitudinal=transverse sound velocity) and assume a
Gaussian correlation function

 

~C�k� � �4��2�3=2 expf�k2�2g (8)

one would obtain ~�00L;T;0�!� / ��
3!3=v5

L;T�e
�!2�2=v2

L;T .
Inserting this into expressions (5)–(7), leads just to the
results of MB [14] for Iij�!� and ��!�. We conclude that
the MB theory describes the Raman spectrum of a Debye
solid with spatially fluctuating Pockels constants. Obvi-
ously the disorder-induced distortions of the plane waves
introduced by MB only enter into the prefactor of the
spectrum but do not affect its frequency dependence.

In order to describe the vibrational excitations of a
disordered (non-Debye) solid we apply the model devel-
oped in [23,26]. The model is based on the assumption that
as a result of the disorder the shear modulus G of the
material has a spatial variation G � G0 � �G�r�, where
the fluctuations �G�r� have a correlation function CG�r� �
h�G�r0 � r��G�r0�i. This model can be solved in self-
consistent Born approximation (SCBA), which appears as
a saddle point of a matrix-valued effective field theory
(nonlinear � model [29,30]). The short-range correlated
version of this model [i.e., CG�k� � const / h�G2i for
k < kD, where kD is the Debye wave number] has already
been applied successfully for describing the anomalous
vibrational properties of glasses [23,25,26]. Quite recently
the inclusion of longer-range correlation has been shown
[31] to lead to an interesting scaling behavior of the
Brillouin linewidth and a reinforcement of the boson-
peak anomaly.

In SCBA the disorder enters via a complex self-energy
function ��!� [32], which obeys the self-consistent equa-
tion

 ��!��	
Z
jkj<kD

d3k
�2��3

~CG�k���L�k;!���T�k;!�� (9)
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where we have put CG�k� � fG ~CG�k� with 1
8�3	R

jkj<kD
d3k ~CG�k� � 1 and 	 / fG / h�G2i.

For the dynamic susceptibilities we have

 �L;T�k;!��k2GL;T�k;!��
k2

�!2�k2�v2
L;T;0��L;T�!��

:

(10)

Here GL;T�k; !� � G0L;T�k; !� � iG
00
L;T�k; !� are the lon-

gitudinal and transverse Green’s functions [33], vL;T;0 are
the unrenormalized sound velocities (the ones in the ab-
sence of disorder), and �T�!� � ��!�, �L�!� � 2��!�.

The DOS is obtained as usual [33] from the Green’s
functions:

 g�!� �
2!
�

V
3N

Z
jkj<kD

d3k
�2��3

�G00L�k;!� � 2G00T�k;!��;

(11)

	 / h�G2i=hGi2 is the parameter, which characterizes the
state of disorder of the material. If 	 exceeds a critical
value 	c the system becomes unstable; i.e., the level den-
sity g�!2� � g�!�=2! extends to values of !2 < 0. As 	
approaches 	c the BP becomes more pronounced and
shifts to lower frequencies [23–26].

Our other input parameters are the Debye wave num-

ber kD �
�������������������
6�2N=V3

p
� 1=a (N is the number of atoms, V

is the sample volume, and a is an interatomic spacing)
the longitudinal and transverse sound velocities vL;T ���������������������������������������������
v2
L;T;0 ��0L;T�! � 0�

q
, and the correlation lengths �1;2,

�G, which enter into the correlation functions C1;2�r�,
CG�r�. In the present study we set �1 � �2 � �G 
 �

and assume Gaussian correlation functions of the form
(8). This leaves only two adjustable parameters: 	 and �
[34]. For the polarized intensity and the depolarization
ratio the ratio f1=f2 of the mean-squared Pockels constant
fluctuations is needed as well.

In order to show that our theory works we study the
example of glassy As2S3. In Fig. 1 it is demonstrated that
the measured DOS and specific heat [7,35] can be ac-
counted for by our SCBA theory. The correlation length,
which fits the data, turns out to be just two interatomic
spacings [34]. The specific heat has been calculated in the
usual way from the DOS, weighted with the temperature
derivative of n�!� [25]. In Fig. 2 we use the same parame-
ters (see figure captions) for calculating the VH inten-
sity [Fig. 2(a)] and the depolarization ratio [Fig. 2(c)].
We see that the agreement with the measured data is satis-
factory. We note that the position of the BP in g�!�=!2

(�17 cm�1) does not coincide at all with the maximum of
the Raman intensity (�24 cm�1). We conclude that the
Raman maximum is not related with the BP of the reduced
DOS. In order to explore deviations from the MB/Debye
theory we have divided the data and the theoretical curves
of Fig. 2(a) by !2. As to be expected, the MB curve
decreases monotonically. In the data and in our theoretical
curves an excess is visible which has its maximum near the
position of the BP of g�!�=!2. However, it is clear from
comparing Figs. 1 and 2 that the Raman intensity is not
related to the DOS in a simple way.
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FIG. 1 (color online). (a) Measured reduced DOS [7] and
reduced specific heat [35] of glassy As2S3 compared with theory:
vT � 1:4 km=s, vL � 1:8vT [36], kD � 1:32	 1010 m�1 from
density data [37], 	 � 0:835	c � 0:352v4

T , �G � 1=kD (dots),
�G � 2=kD (full line), �G � 4=kD (dash-dash-dotted line). The
dashed lines correspond to the Debye model (	 � 0).
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FIG. 2 (color online). (a) Measured reduced intensity
IVH�!�=!�n�!� � 1� of glassy As2S3 4: [36], �: [7] compared
with our theory using the same parameters and line codes as in
Fig. 1. The dashed and dash-dotted lines are the Martin-Brenig
theory (i.e., 	 � 0) with � � 2=kD (dashed line) and � � 4=kD
(dash-dotted line); (b) same data divided by !2; only theory
curves with � � 2=kD are displayed. (c) Measured depolariza-
tion ratio [36] with theoretical curves calculated with f1=f2 �
0:65 and � � 2=kD.
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In conclusion we have achieved to formulate a theory for
low-frequency Raman scattering in disordered solids based
on the model assumption of spatially fluctuating Pockels
constants. We have shown that it is possible to describe the
different vibrational spectral properties of a disordered
solid within a unified theoretical framework. For the case
of glassy As2S3 we demonstrated that the vibrational
anomalies of specific heat and DOS can be reconciled
with the Raman spectrum to obtain good agreement be-
tween theory and experiment.
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