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We present a study of the magnetic field-dependent thermal transport in the spin S � 1 chain material
Ni�C2H8N2�2NO2�ClO4� (NENP). The measured thermal conductivity is found to be very sensitive to the
field-induced changes in the spin excitation spectrum. The magnetic contribution to the total heat
conductivity is analyzed in terms of a quasiparticle model, and we obtain a temperature and momentum
independent mean free path. This implies that the motion of quasiparticles is effectively three dimensional
despite the tiny interchain coupling.
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The recent theoretical interest concerning heat transport
in one dimensional (1D) spin systems (see review article
[1] and the most recent papers [2–8]) was greatly stimu-
lated by observations of a large spin thermal conductivity
�s in two-leg Heisenberg S � 1=2 ladder compounds
�La; Sr;Ca�14Cu24O41 at high temperatures, with the
mean free path of spin excitations l reaching 3000 Å [9–
11]. However, experiments on several Heisenberg S � 1
chain compounds [12–14] provided evidence for consid-
erably lower �s, with l � 60 �A. This is surprising because
the S � 1 chain model and the S � 1=2 ladder model are
essentially equivalent [15]. Both adopt a spin liquid state
with exponentially decaying correlations and an energy
gap in the spin excitation spectrum.

The spin thermal conductivity �s at a finite frequency !
can be decomposed into a singular and a regular part

 Re�s�!� � Dth��!� � �reg�!�; (1)

where Dth is the thermal Drude weight. In our experiment,
we measure the dc conductivity Re�s�! � 0�. For inte-
grable models and continuum field theories, heat transport
is ballistic even at finite temperature T, Dth > 0, as con-
servation laws prohibit the decay of the heat current. Both
extrinsic sources of scattering, such as defects and pho-
nons, and intrinsic spin-spin interactions which are not
integrable, render the heat conductivity finite [1–7,16,17].

Measurements of the thermal conductivity in external
magnetic fields, which can strongly modify the spin exci-
tation spectrum, offer detailed information on scattering
mechanisms limiting �s. However, magnetic fields typi-
cally available are too weak to noticeably influence the
spectrum of spin excitations in the previously investigated
[12–14] S � 1 chain materials AgVP2S6 and Y2BaNiO5

with strong intrachain exchange J > 250 K.
In this Letter, we present results on field-dependent heat

transport in one of the model low-J S � 1 chain materials,
Ni�C2H8N2�2NO2�ClO4�, viz. NENP. The mean free path
of the spin excitations, evaluated from our data, is large and

temperature-independent allowing us to identify the most
relevant scattering mechanism. The heat transport at low
temperatures is determined by rare defects, cutting the spin
chains into segments, and not by the intrinsic interactions.

NENP crystallizes in the orthorhombic Pnma space
group with lattice parameters a � 15:223 �A, b �
10:300 �A, and c � 8:295 �A [18]. The S � 1 spins of
Ni2� form chains along the b axis with exchange constant
J � 43 K [19], while the interaction J0 between the chains
is much weaker (J0=J� 8	 10�4 according to [20]).
Therefore, low-temperature 3D ordering is neither ex-
pected nor observed. Neglecting the interchain interaction
for the moment, the appropriate Hamiltonian is

 H�
X
i

fJSiSi�1�D�Siz�
2�E
�Six�

2��Siy�
2���BSi �gBg;

(2)

whereD and E are single-ion anisotropy constants, B is the
magnetic field, and g is the gyromagnetic tensor. In an
ideal isotropic antiferromagnetic (AFM) S � 1 chain, the
excitations are triply degenerate with a gap � � 0:41 J at
the AFM wave vector kAF � �=d, where d � b=2 is the
distance between neighboring spins along the chain. In
NENP, the strong planar anisotropy and weak orthorhom-
bic anisotropy (D=J � 0:2 and E=J � 0:01 [18,21]) split
� into three gaps �i (i � 1, 2, 3) with the zero-field values
�0

1 � 29 K, �0
2 � 14:3 K, and �0

3 � 12:2 K [20]. With
increasing B k b, �1 stays constant, �2 increases, and �3

decreases such that it should close at the critical field Bc �
10 T and the system should enter a gapless Luttinger liquid
(LL) state for B> Bc [22]. This does not happen, however,
because the chemical environment of every second Ni
atom along the chain is oriented in a different direction
[23]. This alternating tilting introduces an additional termP
i��1�i�BSi � gstB in the Hamiltonian Eq. (2), where the

staggered transverse field Bst � jgstBj is proportional to
the homogeneous field B. As a consequence, the gap
remains finite at B � Bc and increases above Bc.
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The crystals of NENP used for our experiments were
grown as described in Ref. [24]. One crystal of dimensions
1:1	 3	 0:5 mm3 with the longest dimension along the b
axis was used for the measurements of the thermal con-
ductivity along the spin chains. A sample of dimensions
1:8	 0:8	 1:4 mm3 for measurements perpendicular to
the chains was cut from another crystal. For the thermal
conductivity measurements, we employed a standard
steady state method with the same arrangement of the
thermometers and heater as described in Ref. [25]. The
experiments were performed in the temperature range
between 0.3 and 50 K in magnetic fields up to 16 T applied
parallel to the chain direction.

The thermal conductivity ��T� both parallel (�k) and
perpendicular (�?) to the chain direction in zero field and
in B � 8:2 T are shown in Fig. 1(a). The relative changes
of �k as a function of magnetic field �k�B�=�k�0� at several
constant temperatures are displayed in Fig. 1(b). The strik-
ing observation is that a magnetic field leads to a strong
enhancement of the thermal conductivity up to 5 times its
zero-field value. This strong enhancement is restricted to
the direction parallel to the chains. The small increase of
�?�B� can easily be attributed to a less than 1
 deviation of
the heat flow direction from being exactly perpendicular to
the b axis.

The total thermal conductivity of a magnetic insulator
can be represented as � � �ph � �s, where the two terms
on the right-hand side correspond, respectively, to the
phononic and magnetic contributions to the heat transport
(possible spin-phonon drag contributions are included in
�s). The spin excitation spectrum at B � 0 is gapped with
the smallest gap �3 � 12:2 K; therefore, at T � �3, both
spin thermal conductivity and phonon-spin scattering are
negligible. With increasing B at a constant temperature,
�3�B� decreases, and the number of thermally activated
spin excitations increases. Therefore, �s�B� should in-
crease, while �ph�B� should decrease because of the grow-
ing phonon scattering by spin excitations. Because of the
quasi-1D nature of the spin system in NENP, �?s is small
and �? � �?ph. Thus, the observed negligible influence of

the magnetic field on �? suggests that spin-phonon scat-
tering is weak. The increase of �k�B� in fields 0<B< Bc
clearly demonstrates that all field-induced changes in �k

originate from �s.
A salient feature of the curves shown in Fig. 1(b) is that

for all temperatures below about 1.5 K there is a region of
low fields where �k�B�=�k�0� are practically field-
independent. This means that below about 1.5 K �k�B �
0� is purely phononic. Therefore, by subtracting the zero-
field values from �k at these temperatures we obtain a good
estimate of �s�B�.

We have measured �k�T� below 1.5 K at several constant
fields. The spin contribution �s�B; T� � �k�B; T� �
�k�0; T� is shown in Fig. 2. For a quantitative analysis of
the data, we consider the heat transport associated with
excitations from the singlet ground state to the lowest
triplet branch. As the energy gaps for the other two
branches of the triplet either increase with B or stay con-
stant, their contribution to the heat transport below T �
1:5 K can be disregarded. The interaction between chains
is very weak in comparison with the intrachain interaction;
nevertheless, it still leads to a dispersion perpendicular to
the b axis with a bandwidth of about 2 K and 0.8 K along
the a and c axes, respectively [20,26]. The dispersion we
use in order to analyze �s in low fields (hence the subscript
‘‘lf’’) 1 T � B � 6 T is given by
 

"lf�k� � f
��0
2 � �0

3�=2�2 � V2�kbd� ��2

� ��Ea�2
�1� coskaa�=2�2

� ��Ec�
2
�1� coskcc�=2�2g1=2 � gb�BB; (3)

with constants �0
2 � 14:3 K, �0

3 � 12:2 K, �Ea � 7:5 K,
and �Ec � 5:0 K taken from neutron scattering experi-
ments [20,26] and gb � 2:15 from an ESR study [19]. The
value of V � 2:49 J, used in the analysis, is predicted by
theory [27] and is confirmed by the inelastic neutron
scattering measurements [20,28]. Equation (3) describes
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FIG. 1 (color online). (a) Thermal conductivity of NENP par-
allel and perpendicular to the spin chains as a function of
temperature at B � 0 and B � 8:2 T. (b) The relative change
of the thermal conductivity of NENP parallel to the spin chains
as a function of magnetic field at several constant temperatures.
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FIG. 2. Magnetic contribution to the thermal conductivity of
NENP parallel to the spin chains as a function of temperature at
several constant fields. The solid lines represent the calculated �s
(see text). The error bars arise from the uncertainty in subtraction
of �ph from the total measured thermal conductivity.
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correctly the linear-in-B decrease of the energy gap at q �
�0; �=d; 0� between 1 and 6 T observed in the ESR experi-
ment [19], but does not account for deviations at higher
fields caused by the influence of the aforementioned trans-
verse staggered field.

Within the Boltzmann equation approximation, the spin
thermal conductivity parallel to the chain direction is rep-
resented by

 �s �
n

@�3 l
Z �=a

0
dka

Z �=c

0
dkc

Z �=b

0

df
dT

"�k�
d"�k�
dkb

dkb;

(4)

where n � 4 is the number of spins in the unit cell of
NENP, f is the distribution function, "�k� is the energy,
and l is the mean free path of spin excitations. In Eq. (4),
we use the Fermi distribution f � 
exp�"=kBT� � 1��1

(taking into account the hard-core repulsion of the 1D
excitations) [29], but as the temperature is well below the
gap, one can equally well use a Boltzmann or Bose
distribution.

In the field region 1 T � B � 6 T, where "�k� �
"lf�k�, the only unknown parameter in Eq. (4) is l. Thus,
the mean free path, l�B; T�, as a function of B and T can be
extracted from the experimental data of Fig. 2 and is shown
in Fig. 3. Within the experimental accuracy, the mean free
path is independent of both T and B, with the average value
�l � 0:75� 0:1 �m. Remarkably, �l for NENP is as large as
the highest values of the mean free path found for S � 1=2
Heisenberg chains and ladders [10,25,30], where impuri-
ties are the main source of scattering for spin excitations at
low T. Both for spin-spin and spin-phonon scattering, the
mean free path is expected to increase rapidly with de-
creasing T [3]. We therefore conclude that, at least at T <
0:04 J, scattering by defects and not the intrinsic interac-
tions determine �s. A mean free path due to the intrinsic

processes is theoretically expected to be huge [2] as
Umklapp processes which relax momentum are exponen-
tially suppressed for T � J.

A field and temperature independent mean free path
cannot be obtained from a purely 1D model. For both
weak and strong impurities, one expects [25] in one di-
mension a momentum dependent mean free path propor-
tional to the square of the velocity, lk / v2

k, implying
effectively a variation of l linear with T. The situation is,
however, completely different when one takes the tiny
three dimensional coupling between the chains into ac-
count. If spin excitations can pass ‘‘strong’’ impurities,
which effectively cut the chains into segments, by hopping
to the next chain instead of tunneling through the defect,
one naturally obtains a mean free path given by the dis-
tance of the defects. We have calculated the weak T
dependence of l (solid line in Fig. 3) assuming a small
density of local, infinitely strong potential scatterers in a
model defined by the dispersion relation (3) for a gap � of
5 K (for T � � the result is almost independent of �).
Such a simple calculation to linear order in the density of
defects is valid as the interchain coupling J0 (or more
precisely the bandwidth in perpendicular direction) is
much larger than the inverse of the time needed by a spin
excitation with energy T to propagate to the next defect,
J0 >

������
TJ
p

d=l.
The calculations for the mean free path dominated by

strong impurities describe the data very well (solid line in
Fig. 3). This is not the case when one assumes that small
fluctuations �J & T of J dominate transport (dashed line in
Fig. 3). In the latter case, the scattering rate is proportional
to the density of state [obtained again from Eq. (3)].

The model we used for the low-field calculations fails
to describe �s�B; T� at B> 6 T. This is illustrated in
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FIG. 3 (color online). Mean free path of spin excitations,
calculated for 1 T � B � 6 T. The error bars correspond to
those of �s shown in Fig. 2. An approximately constant mean
free path can be obtained from a model (solid line) where strong
impurities effectively cut the spin chains into segments of length
l. In contrast, the data cannot be described (dashed line) by weak
fluctuations of J.
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FIG. 4 (color online). (a) �s�B� calculated for T � 1:33 K
with (solid line) and without (dashed line) consideration of the
staggered transverse field. The open circles represent the experi-
mental data. (b) The open squares are the minimum energy gap
�min estimated in our analysis. For comparison, the energy gap
obtained from specific heat measurements from Ref. [32] are
shown (stars). The solid squares are the fitted values for �? (the
vanishing of �? below 6 T may be an artifact of the fitting
procedure as �min depends very little on �? in this regime).
Inset: The fit values of the mean free path of spin excitations.
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Fig. 4(a), where the dashed line is �s�B� calculated for a
constant temperature T � J using Eqs. (3) and (4) with
l � �l. The calculated �s�B� shows an increase when B
approaches the LL state from the gapped state, with a
plateaulike feature at Bc broadened by the interchain in-
teraction. This is the expected generic behavior for a 1D
spin system near a quantum phase transition from a gapped
to a gapless state and has, indeed, been observed for the
S � 1=2 chain compound CuPzN in [25]. The different
behavior of NENP for high fields arises obviously from the
energy gap induced by the staggered field.

We have fitted Eq. (4) to the �s�T� data presented in
Fig. 2 using a modified dispersion relation "�k� ����������������������������

�2
? � "

2
lf�k�

q
, where "lf�k� is given by Eq. (3) and the

energy gap �? is induced by the staggered field. A simi-
lar heuristic fitting formula has, e.g., been used in Ref. [31]
to describe the S � 1=2 chain compound CuCl2 �
2
�CD3�2SO� where, similar to NENP, a staggered field
induced by a uniform magnetic field leads to a finite gap in
the spin excitation spectrum. For each value ofB between 1
and 16 T, Eq. (4) was fitted to the experimental �s�T� data,
shown in Fig. 2, with two free parameters l and �?,
assuming that l is T-independent for each B. The resulting
�s�T� curves are shown in Fig. 2. The fit values for �?�B�
are shown by solid squares in Fig. 4(b), the data for l�B� are
presented in the inset of Fig. 4(b). The solid line in Fig. 4(a)
is calculated using these data for l�B� and �?�B�. As
shown in Fig. 4(b), there is an agreement between our
data for the minimum energy gap �min � f
��

0
2 �

�0
3�=2� gb�BB�2 � �2

?g
1=2 at k � ��=a;�=d; �=c� and

the data for the energy gap obtained from the specific heat
measurements [32]. The essential result is that the mean
free path l remains close to its low-field value �l � 0:75 �m
in the entire 1–16 T field region. This is again consistent
with the notion of a mean free path determined by strong
impurities.

In summary, from our measurements of the anisotropic
thermal conductivity of the S � 1 Haldane chain com-
pound NENP, we identify a large magnetic contribution
along the spin chain direction. The mean free path of spin
excitations is orders of magnitude larger than previously
observed for other S � 1 chain materials and of the same
order of magnitude as in the best S � 1=2 chain and ladder
compounds. We have argued that the absence of a tem-
perature and field dependence of the mean free path can be
explained by rare defects, which effectively cut the spin
chains into segments, in combination with a tiny interchain
coupling. The measured values of spin thermal conductiv-
ity may also serve as a lower limit for future theoretical
estimates of the intrinsic diffusive contribution to the heat
transport in S � 1 AFM chains at low temperatures.
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