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Using the local density approximation and a realistic phonon spectrum we determine the momentum
and frequency dependence of �2F�k; !� in YBa2Cu3O7 for the bonding, antibonding, and chain band.
The resulting self-energy � is rather small near the Fermi surface. For instance, for the antibonding band
the maximum of Re� as a function of frequency is about 7 meV at the nodal point in the normal state and
the ratio of bare and renormalized Fermi velocities is 1.18. These values are a factor of 3–5 too small
compared to the experiment showing that only a small part of � can be attributed to phonons.
Furthermore, the frequency dependence of the renormalization factor Z�k; !� is smooth and has no
anomalies at the observed kink frequencies which means that phonons cannot produce well-pronounced
kinks in stoichiometric YBa2Cu3O7, at least, within the local density approximation.
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Angle resolved photoemission (ARPES) experiments in
high-Tc cuprates show that electrons near the Fermi sur-
face interact strongly with bosonic excitations causing a
kink in their dispersion at rather well-defined energies [1–
3]. The most popular candidates for the bosonic excitations
are spin fluctuations [4] and phonons [2]. Plausible argu-
ments have been put forward for either of the two choices,
but no consensus has been reached up to now on which of
these two possibilities actually is realized in the cuprates.
Recently, an explanation of these effects entirely in terms
of phonons has been proposed identifying the 40 and
70 meV kink energies with the buckling and the breathing
phonon modes [5]. It was also argued that the electron-
phonon (ep) coupling in these systems is strongly aniso-
tropic with respect to momenta and phonon branches and
that the coupling to the breathing and the buckling phonon
modes takes place at different points in the Brillouin zone
[5], which would provide a natural explanation of several
observations.

Assuming that the local density approximation (LDA)
for stoichiometric YBa2Cu3O7 represents a reasonable first
approximation for the electron-phonon coupling in doped
cuprates it is the aim of this Letter to find out whether an
explanation of the kink phenomenon entirely in terms of
phonons is possible. To this end we generalize previous
calculations [6] for the Eliashberg function where both
momenta were averaged over the Fermi surface to the
case where the average is done only with respect to one
momentum. Multiplying with 2=! and considering a gen-
eral electronic band � the resulting function ���k; !� can
be used to study the anisotropy of the electron-phonon
interaction as a function of the momentum and frequency
using realistic phonon branches determined from first prin-
ciples. Our approach omits possible effects due to strong
electronic correlations beyond the LDA, a problem which
presently is unsettled. This shortcoming seems not to be

very serious for our work and conclusions because several
calculations suggest [7,8] that strong electronic correla-
tions tend to decrease rather to increase the ep interaction
in q-integrated quantities such as the self-energy.

The momentum and frequency dependent coupling
function ���k; !� is defined by [9]
 

���k;!��
2

!

X
q;j;�

jgj�k�;k�q��j2 ���!�!qj����k�q��:

(1)

gj�k�;k� q�� denotes the amplitude for a transition
from the electronic state with momentum k and band index
� to the state with momentum k� q and band index �
creating (annihilating) a phonon with branch label j and
momentum q (� q). !qj and �k� are the eigenenergies of
the phonons and electrons, respectively; the latter are
measured relative to the chemical potential. Additional
calculations suggest that � can be considered to be diago-
nal in the band indices. A direct evaluation of Eq. (1) is
difficult because high numerical costs restricted the calcu-
lation of the matrix elements g to rather coarse q meshes.
Large fluctuations due to a small number of terms in Eq. (1)
can be avoided, however, by introducing Fermi-surface
harmonics [10]. In this approach, the k dependence of
���k; !� is expanded in a basis set of functions W formed
by products of an even power of electron velocities
v��k�� � @�k�=@k� where � is a Cartesian index. We
explicitly write

 ���k; !� �
X

n
W�n;k�����n; !�; (2)

 W�n;k�� � v2nx
x �k��v

2ny
y �k��v

2nz
z �k��; (3)

with n � �nx; ny; nz�. Defining the Fermi-surface average
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of a variable X�k� by

 hhXii� �
X
k

���k��X�k�
�X

k

���k��; (4)

we define

 ���n; !� � hhW�n;k�����k; !�ii�: (5)

Inserting Eq. (2) into Eq. (5) one can solve for the coef-
ficients ���n; !�, and one obtains

 ���k; !� �
X
n
W�n;k��

X
m
S�1
� �n;m����m; !�; (6)

with

 S��n;m� � hhW�n;k��W�m;k��ii�:

Calculation of the quantities ���n; !� involves Fermi-
surface averages of the squared matrix elements g
weighted by the basis functions W, which can be easily
performed within LDA. Once ���n; !� are known,
���k; !� can be obtained from Eq. (6). Typically 10 func-
tions W�n;k�� were used in the following calculations.
The sum over electron momenta in Eq. (4) was carried out
on a dense 36� 36� 4 mesh. For the momenta q we used
a 12� 12� 4 mesh. � functions in Eqs. (1) and (4)
involving electronic energies were approximated by a
Gaussian with a width of 0.2 eV. Additional calculations
using more basis functions and a smaller width for the
Gaussian showed that our results are reasonably stable
against larger basis sets or a refined representation of the
� functions.

Figure 1 shows ���k; !� integrated over the frequency
from 0 to 50 meV (left column) and from 50 to 80 meV
(right column). The diagrams in the first row refer to the
bonding, those in the second row to the antibonding, and
those in the third row to the chain band. The latter two are
partly hybridized in the �0:5; 0� direction. The diagrams
were calculated for kz � 0:125, but the corresponding ones
for kz � 0:375 look very similar; i.e., the diagrams are
practically independent of the momentum perpendicular
to the planes. The thick and thin black lines correspond to
lines with �k� � 0 and �0:2 eV, respectively. As the
above numerical procedure incorporates only quantities
in the vicinity of the Fermi surface, the calculated values
for ���k; !� are reliable in the region between the thin
black lines whereas larger errors may be expected for
momenta far away from the Fermi surface.

The diagrams in the first row of Fig. 1 show that the
coupling functions associated with the bonding band have
approximately tetragonal symmetry but that they vary
along the Fermi line: Their minima and maxima occur at
the nodal and antinodal points, respectively, leading to a
variation of about a factor of 1.5 and 1.3 for phonons below
and above 50 meV, respectively. Whereas a momentum-
dependent � would be in line with the scenario of Ref. [5]
there are serious discrepancies: The coupling to high-
frequency phonons, for instance to the breathing and
half-breathing modes, should show a maximum in nodal

direction whereas we find that it has there a minimum
similar as in the case of low-frequency modes. In other
words, the coupling to high- and low-frequency modes at
the nodal and antinodal points is very similar which means
that electronic self-energies due to phonons at these two
points will not select predominantly low- or predominantly
high-frequency phonons. Furthermore, the variation of �
along the Fermi line is rather small in our case, i.e., �
cannot be considered to be very anisotropic. The diagrams
in the second row of Fig. 1 describe � associated with the
antibonding band, except for a part close to �0:5; 0�, where
an exchange of character with the chain band occurs (lower
diagrams of Fig. 1). However, the antibonding states in the
antinodal direction along ky 	 0:5 and in the nodal direc-
tion are not affected by this hybridization. The momentum
dependence of � associated with the antibonding band
resembles that of the bonding band. The coupling of elec-
trons near the Fermi line to low- and to high-frequency
phonons is again rather similar as a function of k; the
absolute values for � are roughly larger by a factor of 3
for low- than for high-frequency phonons, similar to the
case of the bonding band. The same trend is found for the
chain band, with an anisotropy of the order of 2 or smaller.
Using a 4� 4� 2 mesh for q yields qualitatively similar
results for � as the 12� 12� 4 mesh. Quantitatively, the

FIG. 1 (color). Coupling function ���k; !� integrated over !
between 0 and 50 meV (left diagrams) and ! larger than 50 meV
(right diagrams). Shown are xy cuts through the irreducible
Brillouin zone (0 
 kx; ky 
 0:5) for kz � 0:125. The upper
plots refer to the bonding, the middle ones to the antibonding,
and the lower ones to the chain band. The latter two are
hybridized in the �0:5; 0� direction. The gray areas represent
states with energies far away (�0:8 eV) from the Fermi energy.
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difference between the bond and antibonding bands as well
as their anisotropies are more pronounced in this case, in
particular, for the bonding band. The present inversion
procedure leads in this case also to unphysical small nega-
tive values for � in a small region away from the Fermi line
for the bonding band which does not occur for the em-
ployed finer 12� 12� 4 mesh.

The following results refer to the antibonding band;
thus, from now on we drop the band index �. Figure 2
shows frequency-resolved coupling functions ��k; !� for
momenta near the Fermi line in nodal (upper diagram) and
antinodal (lower diagram) directions. The solid lines cor-
respond to kz � 0:375, the dotted lines to kz � 0:125. The
differences between the solid and dotted lines are very
small reflecting the very small kz dependence of �. The
spectra are very broad and extend over the entire one-
phonon range. It is evident that models which use only
one or a few selected phonons are not able to represent
adequately the phonon spectrum.

The imaginary part of the retarded electronic self-energy
due to phonons can be written as [9]
 

Im��k; !� � �
�
2

Z 1
0
duu��k; u��2b�u� � f�u�!�

� f�u�!�: (7)

Here, b and f denote the Bose and the Fermi functions,
respectively, and we assumed the self-energy to be diago-
nal in the band index. The corresponding real part of � was
obtained by a Kramers-Kronig transformation using a cut-
off of 1 eV. Figure 3 shows the calculated self-energy near
the nodal and antinodal Fermi points using the coupling
functions of Fig. 2. The negative imaginary part of �
increases monotonically over the whole phonon spectrum
and then approaches a constant. The negative real part
increases first, passes through a maximum roughly in the
middle of the phonon spectrum, and then decreases mono-
tonically. Both the real and imaginary parts of � exhibit
small oscillations as a function of frequency which reflect
the many maxima in ��k; !� and the complexity of the
phonon spectrum. At elevated temperatures (for instance,
at T � 9 meV) these oscillations vanish; the maximum in
Re� becomes somewhat smaller and Im� finite at zero
frequency, but otherwise there is no substantial change in
�. Figure 3 also illustrates the small anisotropy of �: In
the antinodal direction � is only slightly larger compared
to the nodal direction while the position of the maximum
of Re� is approximately the same. For the nodal direc-
tion experimental values for the maximum of Re� are
20–40 meV [3,11] whereas we have only about 7 meV at
T � 9 meV.

Figure 4 shows the frequency dependence of the re-
normalization function Z, defined by Z�k; !� � 1�
Re��k; !�=!, near the nodal and antinodal Fermi points.
At zero frequency Z is equal to 1� ��k� where ��k� is
the frequency-integrated, dimensionless coupling constant
depending still on the momentum. This coupling constant
is about 0.18 and 0.22 at the nodal and antinodal points,
respectively, illustrating again the smallness of the
electron-phonon coupling. With increasing frequency Z
increases first slightly, passes through a maximum and
then approaches unity beyond the end of the one-phonon
spectrum. Superimposed on this general behavior are many
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FIG. 2 (color online). Momentum and frequency-resolved cou-
pling function ��k; !� in 1=meV of the antibonding band near
the Fermi surface in the nodal (upper diagram) and the antinodal
(lower diagram) direction. Solid and dotted lines correspond to
kz � 0:375 and 0.125, respectively.

0 6 00 20 4 0 8 100 120
frequency ω (meV)

−16

−12

−8

−4

0

S
el

f−
en

er
gy

 Σ
(m

eV
)

kz=0.125
T=1 meV
antibonding b.

Re Σ

Im Σ

antinodal dir.
nodal dir.

FIG. 3 (color online). Real and imaginary parts of the self-
energy � of the antibonding band near the Fermi points along the
nodal and antinodal directions at the temperature T � 1 meV.
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small oscillations which reflect the numerous density peaks
in Fig. 2 and which vanish already at T � 9 meV. If, as in
our case, the imaginary part of � is rather small, the
dispersion of the electrons is given by the equation ! �
�k=Z�k; !� which for small �’s has the solution ! �
�k=Z�k; �k�. A kink in the dispersion is generated if Z
changes from a large to a small value in a narrow frequency
interval. This happens, for instance, in a model with one
single optical phonon; see Fig. 2 of Ref. [12]. However, for
our realistic phonon spectrum and coupling functions this
does not occur according to Fig. 4, so there will be no well-
pronounced kink feature in the electronic dispersion. There
seems to be a general consensus that ARPES data for the
nodal and antinodal directions yield kink energies of about
70 and 40 meV, respectively. It is clear that these energies
do not represent any characteristic energies in the fre-
quency dependence of Z in Fig. 4.

Finally, the left diagram in Fig. 5 illustrates the weak-
ness and smoothness of the renormalization of the disper-
sion of the antibonding band in the nodal direction and also
its weak dependence on temperature. The ratio of asymp-
totic slopes at small and large frequencies is about 1.18
which is much smaller than typical experimental values of
about 2 in optimally doped cuprates [2,3,13]. The right
diagram in Fig. 5 shows spectral functions of the antibond-
ing band along the nodal direction for five different mo-
menta kx � ky. Unlike in the case of one optical phonon
coupled strongly to electrons, discussed in Ref. [12], the
solid lines show always only one peak which departs and
then returns very smoothly from the noninteracting peak
with decreasing energy.

Based on the above LDA results our main conclusions
are: (a) the coupling function ��k; !� shows as a function
of k a minimum at the nodal and a maximum at the
antinodal Fermi point rather independently of the involved

phonon modes. The resulting anisotropy in k is rather
moderate both for the bonding and the antibonding band;
(b) it is important to keep a realistic phonon spectrum and
not only one or two phonon branches because the !
dependence of � is mainly determined by phonon densi-
ties where, for instance, the breathing or the buckling mode
do not play any distinguished role; (c) the frequency-
integrated coupling function ��k� varies between 0.18
and 0.22 along the Fermi surface. Because of these rather
small values the phonon-induced electronic self-energies
along the nodal direction are too small by about a factor of
3–5 to account for the self-energies deduced from ARPES
experiments and for the observed slope changes in the
electronic dispersion, at least, within the LDA.

The authors thank T. P. Devereaux for discussions and
clarifications concerning, in particular, the correct defini-
tion of � in a multiband superconductor.
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