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We study strongly correlated electrons on a kagome lattice at 1=6 (and 5=6) filling. They are described
by an extended Hubbard Hamiltonian. We are concerned with the limit jtj � V � U with a hopping
amplitude t, nearest-neighbor repulsion V, and on-site repulsion U. We derive an effective Hamiltonian
and show, with the help of the Perron–Frobenius theorem, that the system is ferromagnetic at low
temperatures. The robustness of ferromagnetism is discussed and extensions to other lattices are indicated.
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Introduction.—Ferromagnetism in solids or molecules
can be of different origin. The most common is spin
exchange between electrons belonging to neighboring
sites. Polarization of the spins and formation of a symmet-
ric spin state reduces the effects of mutual Coulomb re-
pulsions of the electrons due to the Pauli exclusion
principle. The physics is the same as for intra-atomic
Hund’s rule coupling, which also plays a significant role
in the theory of ferromagnetism. The key ingredient of this
mechanism is the potential energy of repulsive electron-
electron interactions minimized by a symmetric spin state
which is better at keeping electrons apart. This should be
contrasted with the standard superexchange mechanism for
antiferromagnetism where the kinetic energy of electrons is
optimized instead. Hence it is often the competition be-
tween the potential and kinetic energies that determines the
‘‘winner.’’ This physics is illustrated, in its extreme limit,
in the case of flat-band ferromagnetism [1,2]. Mielke
pointed out that electrons in a half-filled flat band become
fully spin-polarized for any strength of the on-site repul-
sion U. (One could also think of this effect as an extreme
case of the Stoner instability in metals.)

Therefore it might appear surprising that ferromagne-
tism can also originate from purely kinetic effects. A
prominent example is the ferromagnetic ground state
(GS) discussed by Nagaoka [3] which is due to the motion
of a single hole in an otherwise half-filled Hubbard system.
The argument based on the application of the Perron–
Frobenius theorem shall be presented later. Although it is
only valid in the limit of the infinite on-site Hubbard
repulsion (to exclude the possibility of double occupancy)
on a finite lattice, it demonstrates how ferromagnetism can
result from the motion of the electrons or holes. The same
theorem is also the basis of ferromagnetism due to three-
particle ring exchange, a process first pointed out by
Thouless [4] in the context of 3He (following the original
observation by Herring [5]) and later also studied in the
context of Wigner glass [6] and frustrated magnets [7]. In
both cases, the ferromagnetic GS has the smoothest wave
function and hence lowest kinetic energy.

Our introduction would not be complete without men-
tioning some other sources of ferromagnetism such as the
RKKY interaction in metals or double-exchange (e.g., in
manganites) to name a few. In this paper, however, we will
be concerned with ferromagnetism of kinetic origin. In
particular, we demonstrate that fermions on a partially
filled kagome lattice which are described by an extended
one-band Hubbard model in the strong correlation limit
have a ferromagnetic GS. (The difference with Mielke’s
flat-band ferromagnetism is discussed later in the Letter.)
Again, the physics discussed here is motivated by the
Perron–Frobenius theorem, but otherwise is quite different
from Nagaoka’s and Thouless’ examples.

Model Hamiltonian.—We start from an extended one-
band Hubbard model on a kagome lattice with on-site
repulsion U and nearest-neighbor repulsion V. Using sec-
ond quantized notation, the Hamiltonian is written as

 H��t
X
hi;ji;�

�cyi�cj��H:c:��V
X
hi;ji

ninj�U
X
i

ni"ni#: (1)

Here the operators ci� (cyi�) annihilate (create) an electron
with spin � on-site i. The density operators are given by
ni � ni" � ni# with ni� � cyi�ci�. The notation hi; ji refers
to pairs of nearest neighbors.

We first focus on the case of 1=6 filling (i.e., one electron
per three sites). In the limit of strong correlations, when
jtj � V � U and U ! 1, the possibility of doubly occu-
pied sites is eliminated. First we assume that t � 0. In that
case the GS is macroscopically degenerate. All configura-
tions with precisely one electron of arbitrary spin orienta-
tion on each triangle are GSs [see Figs. 1(a) and 1(b)]. It is
helpful to consider the honeycomb lattice which connects
the centers of triangles of the kagome lattice. Different GS
configurations on the kagome lattice correspond to differ-
ent two-colored (spin) dimer configurations on the honey-
comb lattice [particles are sitting here on links, see
Figs. 1(c) and 1(d)]. They are orthogonal because any
wave function overlap is neglected.

When t � 0, this GS degeneracy is lifted. In the lowest
nonvanishing order in t=V, the effective Hamiltonian act-
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ing within the low-energy manifold spanned by the states
with no double occupancy and exactly one electron per
triangle becomes

 

with g � 6t3=V2. Here the Hamiltonian is written in terms
of dimers on a honeycomb lattice and the sum is performed
over all hexagons. The sum over the three symbols is taken
over all possible color (spin) combinations of a flippable
hexagon. Particles hop either clockwise or counter-
clockwise around the hexagons. These processes can lead
to different configurations, depending on the colors (spins)
of the dimers. We observe that Hhex does not cause a
fermionic sign problem. In particular, the local constraint
of having one fermionic dimer attached to each site allows
for an enumeration of dimers such that only an even
number of fermionic operators has to be exchanged when
the matrix elements of Hhex are calculated.

If one were to ignore the spin degrees of freedom (the
colors of the dimers), the model would be equivalent to the
quantum dimer model (QDM) studied in Ref. [8]. Similarly
to the QDM on a square lattice [9], the effective

Hamiltonian (2) conserves certain quantities—winding
numbers—and connects configurations only when they
belong to the same topological sector. (For the case of
periodic boundary conditions, the winding numbers are
defined by first orienting dimers so that the arrows point
from the A to B sublattice, and second, by counting the net
flow of these arrows across two independent essential
cycles formed by the dual bonds.) The GS of the QDM
was found to be threefold degenerate in the thermody-
namic limit, corresponding to the valence bond solid
(VBS) plaquette phase with broken translational invari-
ance. In what follows, we shall investigate the effects of
quantum dynamics—the ring-exchange hopping of elec-
trons (dimers)—on spin correlations. Note thatHhex has no
explicit spin dependency and conserves both Sztot and the
total spin Stot.

Ferromagnetism from the Perron–Frobenius theorem.—
In short, the Perron–Frobenius theorem states that the
largest eigenvalue of a symmetric n� n matrix with only
positive elements is positive and nondegenerate, while the
corresponding eigenvector is ‘‘nodeless’’, i.e., can be
chosen to have only positive components. Applying this
theorem to the (finite-dimensional) matrix exp���Ĥ� (for
any � > 0), one concludes that if all off-diagonal matrix
elements of the Hamiltonian Ĥ are nonpositive and the
Hilbert space is connected by the quantum dynamics
(meaning that any state can be reached from any other
state by a repeated application of Ĥ), then the GS is unique
and nodeless. It is important to remember that the theorem
only works for systems with a finite-dimensional Hilbert
space.

To show the relation of this theorem to ferromagnetism,
we now sketch the argument for Nagaoka’s ferromagne-
tism in the GS of an infiniteU Hubbard model [Eq. (1) with
V � 0, U ! 1] with a single mobile hole (after
Refs. [10,11]). Denote a state with a single electron or
hole on a site i as ji; �i, where � � f�1; . . . ; �i�1;
�i�1; . . . ; �Ng is the spin configuration of electrons.
We use the convention ji; �i � ��1�icy1;�1

; . . . ;

cyi�1;�i�1
cyi�1;�i�1

; . . . ; cyN;�N j0i. (No double occupancy is
allowed if U ! 1.) In this basis, the matrix elements of
the hopping Hamiltonian are either t, for the states related
by a single hop of the hole between two neighbor sites, or 0
otherwise. The Hamiltonian commutes with both Ŝztot and
Ŝ2

tot. Our chosen basis consists of eigenstates of Ŝztot but not
Ŝ2

tot; hence, we can immediately separate the Hilbert space
into sectors of fixed Sztot. Within each sector, the
Hamiltonian matrix has exactly z (the coordination num-
ber) nonzero entries in each row and each column. A direct
inspection shows that a vector whose entries are all 1 is an
eigenvector with the eigenvalue zt. If t < 0 and tunneling
of a single hole satisfies the connectivity condition, the
Perron-Frobenius theorem applies and hence such a state is
the GS (there can be no other state with positive coeffi-
cients only that is orthogonal to this one), which is unique
for a finite system. (We remark that the sign of t can always

(a) (b)

(c) (d)

(e) (f)

FIG. 1 (color). Panels (a) and (b) show two different configu-
rations satisfying the constraint of zero or one electron per site
and one electron of arbitrary spin per triangle. The arrows
indicate possible ring-hopping processes. An equivalent colored
dimer representation on a honeycomb lattice is shown in (c) and
(d); the colors encode particle spins. Ring exchanges conserve
the parity of the number of dimers on the sublattice shown in
panel (e). Panel (f) shows the 24-site cluster used for the exact
diagonalization. The dimers are arranged to maximize the next-
nearest-neighbor spin interaction along the dashed lines.
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be changed on a bipartite lattice.) Clearly, this state is fully
spin polarized in the Sztot � Smax � �N=2 sectors, and
since the Hamiltonian commutes with Ŝ2

tot, the state with
S2

tot � �Smax � 1�Smax must have the same energy in every
Sztot sector. But we already saw that the states with the
energy E � zt are unique GSs in every sector; hence, they
must have the same S2

tot � �Smax � 1�Smax, QED. The ob-
vious pitfalls may come from taking the thermodynamic
limit or violating the connectivity condition: in both cases
the nodeless, fully spin-polarized state remains a GS but no
claims can be made about other potential GSs.

Turning to our case, we remark that the sign of the
plaquette flip in Eq. (2) can be always chosen negative,
irrespective of the sign of the original tunneling amplitude
t—this is just a matter of a simple local gauge transforma-
tion [9]. Specifically, the sign of g in Eq. (2) can be
changed by multiplying all configurations C with the
color-independent factor i��C� where ��C� is the number
of dimers on the sublattice shown in Fig. 1(e). This fact
might appear surprising though since the actual sign of t
can typically be gauged away only for the cases of bipartite
or half-filled lattices. The reason the sign of t turns out to
be inconsequential in our case of the (nonbipartite) kagome
lattice away from half-filling is due to the constrained na-
ture of the ring-exchange quantum dynamics of Eq. (2). We
therefore choose all off-diagonal matrix elements of Hhex

to be nonpositive. This by itself is not yet sufficient to
apply the Perron–Frobenius theorem since the quantum
dynamics of dimers on a (bipartite) honeycomb lattice is
explicitly nonergodic: as we have mentioned earlier, the
Hilbert space is broken into sectors corresponding to the
winding numbers which are conserved under any local ring
exchanges. On the other hand, the ring-exchange dynamics
of dimers given by Eq. (2) is ergodic within each sector
[12]. Therefore we consider each topological sector sepa-
rately. The argument is very similar to the one presented
earlier for Nagaoka’s ferromagnetism. For the Sztot �
Smax � �Ne=2 spin sectors, the GS is unique, fully spin
polarized, and all elements of its eigenvector are positive.

For all other Sztot sectors, however, the situation appears
more complicated at first sight. The reason is a much
bigger configuration space—essentially, we are now deal-
ing with two-color dimer configurations. A given state can
now be connected by a ring-exchange Hamiltonian to a
larger number of states than it would if all dimers had the
same color (spin). We formalize this by introducing the
notion of descendant states jCki i; k � 1 . . . 2Ne —two-color
dimer configurations obtained from the uncolored ‘‘par-
ent’’ configuration jCii by simply coloring its dimers (i.e.,
assigning spins). The subspace of descendant states can be
partitioned according the conserved Sztot. The resulting
sectors, in general, have different dimensionality D�Sztot�
equal to the number of distinct permutations of spins
(colors). A crucial observation is that

P
khC

k
i jHhexjCmj i �

hCijHhexjCji for any i, j,m. The immediate consequence is
that if j�0i 	 j�0�Ne=2�i �

P
i�ijCii is the GS in the

Sztot � Smax � �Ne=2 spin sector, then j�0�S
z
tot�i �

D�1=2�Sztot�
P
i �i

P0
kjC

k
i i is an eigenstate with the same

energy in any other Sztot spin sector. (The sum over de-
scendants k is performed only within a given spin sector.)
The SU(2) symmetry of the effective Hamiltonian (2) once
again implies that j�0�S

z
tot�i is a GS and is fully spin

polarized.
Notice that the uniqueness of such a GS relies on the

ergodicity of the Hamiltonian within each Sztot spin sector.
Numerical studies on finite clusters up to 48 kagome lattice
sites including different geometries show that this is in fact
the case. Unfortunately, we were not able to provide a
rigorous analytical argument. Should it turn not to be the
case, it would open a possibility for degenerate GSs in
Sztot � Smax spin sectors. Still, at least one of the GSs is
fully spin polarized [13].

While the Perron–Frobenius argument applies to finite
systems, it does not withstand the thermodynamic limit. In
particular, it is known that in the thermodynamic limit the
ground state of the QDM is in the threefold degenerate
plaquette phase [8]. We suspect that ferromagnetism sur-
vives this limit and coexists with such a broken symmetry
state; a conclusive resolution of this point remains a subject
of further research.

The ferromagnetic GS which we find here should not be
mistaken with Mielke’s flat-band ferromagnetism [1,2]. In
fact, Mielke has shown that a positive-U Hubbard model
with V � 0 on a kagome lattice at 5=6 filling has a fully
spin-polarized GS. A detailed discussion of the differences
to our case can be found below.

Stability of kinetic ferromagnetism.—In order to test the
robustness of the ferromagnetic GS, we introduce by hand
an additional next-nearest-neighbor interaction, in the spi-
rit of [14]:

 H0 � Hhex � J
X
hhi;jii

�
SiSj �

1

4
ninj

�
: (3)

By adding such a term, we attempt to frustrate the ferro-
magnetic state. Indeed, this term favors configurations such
as the one shown in Fig. 1(f) which maximize the spin
interactions by having electrons on the same sublattice.
Not only the resulting charge order is expected to suppress
the kinetic mechanism for ferromagnetism, the ferromag-
netic order itself is now suppressed by antiferromagnetic
fluctuations favored by the spin interactions for J > 0. By
gradually increasing J=g towards strong antiferromagnetic
coupling, we can estimate the stability of the ferromagnetic
GS under the presence of short-ranged perturbations.

Numerical results.We calculate by means of exact diag-
onalization the GS of a two-color dimer model on a 18- and
24-site honeycomb lattice. The system corresponds to a
1=6 filled kagome cluster with 27 and 36 sites, respectively.
The calculations on the clusters of different size and ge-
ometry show qualitatively the same results.

The ground-state energies of the different Sz sectors are
degenerate as long as �J=g < J=g�c 
 0:2, as shown in
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Fig. 2. This demonstrates the robustness of ferromagnetism
induced by ring-hopping processes. Above the transition
point �J=g�c 
 0:2 antiferromagnetic spin fluctuations are
no longer suppressed. The ground-state degeneracy of the
different Sz sectors is lifted and the true GS is the one with
the lowest jSzj. The gain in kinetic energy decreases cor-
respondingly since the spin fluctuations cause nodes in the
wave function. The expectation value of Hspin shows a jump
at �J=g�c (see Fig. 2). Note that a small second jump at
J=g 
 0:45 found for the 18 site cluster is an effect of
geometry. The observed findings demonstrate a consider-
able robustness of ferromagnetism generated by kinetic
processes. In the limit J=g! 1, the kinetic processes
are unimportant and the GS is that of a Heisenberg anti-
ferromagnet on a kagome lattice. One of the configurations
which maximize the spin interactions is shown in Fig. 1(f).

The above considerations can also be applied to the case
of 5=6 filling due to the arbitrary choice of sign of g in
Eq. (2). In addition, a ferromagnetic GS is found numeri-
cally for a filling factor of 1=3. With two occupied sites per
triangle, we obtain a fully packed loop covering of the
honeycomb lattice instead of a dimer covering. As before,
there is no sign problem in the strong coupling limit.
However, the effective Hamiltonian is not ergodic in the
1=3 filled case and thus the Perron–Frobenius theorem
does not rule out other GSs which are not fully spin
polarized. Numerical studies confirm a ferromagnetic GS
which is much less robust—antiferromagnetic fluctuations
occur already at very small ratios �J=g�. A more detailed
discussion is left to an extended version of this paper.

We conclude by reiterating the difference between the
two mechanisms for ferromagnetism in a Hubbard model
on the kagome lattice: the one presented here and the flat-
band mechanism discussed in Refs. [1,2,13]. The flat-band

ferromagnetism was demonstrated for the case of V � 0 in
the Hamiltonian (1), while our mechanism requires V !
1. In Mielke’s case, ferromagnetism has been predicted
for the range of fillings between 5=6 and 11=12 and any
value of U > 0. The connection between the sign of the
tunneling amplitude t and the electron concentration is
crucial. This is because the tight binding model on a
kagome lattice has one of its three bands completely flat:
the lowest band for the case of t < 0 or the highest band for
the case of t > 0. On the other hand, the mechanism
presented here is insensitive to the sign of t and, as we
have already mentioned in the introduction, is of kinetic
rather than of potential origin. Furthermore, Perron–
Frobenius theorem is not applicable in Mielke’s case
[13], instead the proof was based on graph-theoretical
methods. By contrast, the kinetic ferromagnetism studied
in this letter relies crucially on strong electron–electron
repulsion U� V ! 1; hence it belongs to a different
class from flat-band ferromagnetism. Despite certain simi-
larities, it must also be distinguished from Thouless’ three-
particle ring-exchange mechanism: the crucial difference
is that a standard three-particle ring-exchange leaves the
particles at the original locations, it simply cyclically
permutes them. In our case the particles actually move;
the initial and final configurations are distinct.

Thus the mechanism found in this Letter represents a
new generic type of kinetic ferromagnetism. An interesting
question is to what extent the ferromagnetism of the form
found here can be extended to other lattice structures. A
particularly interesting case is the pyrochlore lattice. For
the strong correlation limit at 1=8 filling one can use the
Perron–Frobenius-based argument as well, implying a fer-
romagnetic GS. Again, this and other cases will be dis-
cussed in the extended version of this Letter.
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FIG. 2 (color online). Exact diagonalization of the two-color
dimer model on an 18-site (left panels) and 24-site (right panels)
honeycomb cluster. The upper panels show the GS energies of
different Sz sectors as a function of next-nearest-neighbor cou-
pling J=g. The lower ones show the GS expectation values of the
spin part of the Hamiltonian.
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